STGPKP

SpatiotemporalGPs.STGPKF.STGPKFProblemMethod
STGPKFProblem(pts, ks, kt, ΔT)

Defines a spatiotemporal Gaussian Process Kalman Filter problem. Parameters are:

  • pts: grid points, a vector of all points. Ideally, eltype(pts) should be StaticVector for efficiency
  • ks: spatial kernel, must be of type AbstractKernel
  • kt: temporal kernel, must be of type AbstractKernel (but only AbstractMaternKernel is implemented)
  • ΔT: sampling period
source
SpatiotemporalGPs.STGPKF.MaternMethod
Matern(order, σ, l)

creates a Matern kernel with order order, variance σ, and lengthscale l. Order must be (1/2, 3/2, or 5/2). Returns a Matern12, Matern32, or Matern52 kernel.

source
SpatiotemporalGPs.STGPKF.get_estimateMethod
get_estimate(problem, state)

returns the estimate of the Kalman Filter for all grid points, in a Vector{F} format. The outer vector has same length as problem.pts.

source
SpatiotemporalGPs.STGPKF.get_estimate_percentileMethod
get_estimate_percentile(problem, state, percentile)

returns the percentile-% quantile of the estimated spatiotemporal field at all grid points, in a Vector{F} format. The vector has same length as problem.pts.

source
SpatiotemporalGPs.STGPKF.get_estimate_stdMethod
get_estimate_std(problem, state)

returns the standard deviation of the estimated spatiotemporal field at all grid points, in a Vector{F} format. The vector has same length as problem.pts.

source
SpatiotemporalGPs.STGPKF.get_statesMethod
get_states(problem, state)

returns the states of the Kalman Filter for all grid points, in a Vector{SVector{F}} format. The outer vector has same length as problem.pts.

source
SpatiotemporalGPs.STGPKF.kernel_matrixMethod
kernel_matrix(kernel, X, Y)

Compute the kernel matrix between two sets of points X and Y using the kernel function kernel. X must be a vector of points Y must be a vector of points

source
SpatiotemporalGPs.STGPKF.stgpkf_correctMethod
stgpkf_correct(prob, state, pt, y, σ_m)

corrects the state of the Kalman Filter given a single point measurement at $pt$ with value $y$ and measurement noise standard deviation $σ_m$.

source
SpatiotemporalGPs.STGPKF.stgpkf_correctMethod
stgpkf_correct(prob, state, pts, ys, Σm)

corrects the state of the Kalman Filter given multiple point measurements at $pts$ with values $ys$ and measurement noise covariance matrix $Σm$.

source