STGPKP
SpatiotemporalGPs.STGPKF.STGPKFProblem
— MethodSTGPKFProblem(pts, ks, kt, ΔT)
Defines a spatiotemporal Gaussian Process Kalman Filter problem. Parameters are:
pts
: grid points, a vector of all points. Ideally,eltype(pts)
should beStaticVector
for efficiencyks
: spatial kernel, must be of typeAbstractKernel
kt
: temporal kernel, must be of typeAbstractKernel
(but only AbstractMaternKernel is implemented)ΔT
: sampling period
SpatiotemporalGPs.STGPKF.Matern
— MethodMatern(order, σ, l)
creates a Matern kernel with order order
, variance σ
, and lengthscale l
. Order must be (1/2, 3/2, or 5/2). Returns a Matern12
, Matern32
, or Matern52
kernel.
SpatiotemporalGPs.STGPKF.SquaredExponential
— MethodSquaredExponential(σ, l)
creates a Squared Exponential kernel with variance σ
and lengthscale l
. Returns a SqExp
kernel.
SpatiotemporalGPs.STGPKF.checkdims
— Methodcheckdims(prob, state)
checks that the dimensions of the state and the problem match
SpatiotemporalGPs.STGPKF.get_estimate
— Methodget_estimate(problem, state)
returns the estimate of the Kalman Filter for all grid points, in a Vector{F} format. The outer vector has same length as problem.pts
.
SpatiotemporalGPs.STGPKF.get_estimate_clarity
— Methodget_estimate_clarities(problem, state)
returns the clarity of the estimated spatiotemporal field at all grid points, in a Vector{F} format. The vector has same length as problem.pts
.
SpatiotemporalGPs.STGPKF.get_estimate_covariance
— Methodget_estimate_covariance(problem, state)
returns the kalman filter's covariance of the estimated spatiotemporal field at all grid points, in a Vector{F} format. The vector has same length as problem.pts
.
SpatiotemporalGPs.STGPKF.get_estimate_percentile
— Methodget_estimate_percentile(problem, state, percentile)
returns the percentile-% quantile of the estimated spatiotemporal field at all grid points, in a Vector{F} format. The vector has same length as problem.pts
.
SpatiotemporalGPs.STGPKF.get_estimate_std
— Methodget_estimate_std(problem, state)
returns the standard deviation of the estimated spatiotemporal field at all grid points, in a Vector{F} format. The vector has same length as problem.pts
.
SpatiotemporalGPs.STGPKF.get_marginal_states
— Methodget_marginal_states(problem, state)
returns the marginal states of the Kalman Filter for all grid points, in a Vector{KFState} format. The outer vector has same length as problem.pts
.
SpatiotemporalGPs.STGPKF.get_states
— Methodget_states(problem, state)
returns the states of the Kalman Filter for all grid points, in a Vector{SVector{F}} format. The outer vector has same length as problem.pts
.
SpatiotemporalGPs.STGPKF.kernel_matrix
— Methodkernel_matrix(kernel, X, Y)
Compute the kernel matrix between two sets of points X
and Y
using the kernel function kernel
. X
must be a vector of points Y
must be a vector of points
SpatiotemporalGPs.STGPKF.quantile
— Methodquantile(μ, σ, q)
For a normal distribution with mean μ and standard deviation σ, this function returns the q-th quantile.
SpatiotemporalGPs.STGPKF.stgpkf_correct
— Methodstgpkf_correct(prob, state, pt, y, σ_m)
corrects the state of the Kalman Filter given a single point measurement at $pt$ with value $y$ and measurement noise standard deviation $σ_m$.
SpatiotemporalGPs.STGPKF.stgpkf_correct
— Methodstgpkf_correct(prob, state, pts, ys, Σm)
corrects the state of the Kalman Filter given multiple point measurements at $pts$ with values $ys$ and measurement noise covariance matrix $Σm$.
SpatiotemporalGPs.STGPKF.stgpkf_initialize
— Methodstgpkf_initialize(problem)
returns a KFState
that represents the initial state of the Kalman Filter for all grid points
SpatiotemporalGPs.STGPKF.stgpkf_predict
— Methodstgpkf_predict(prob, state)
predicts the next state of the Kalman Filter for all grid points