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Multi-Agent Clarity-Aware Dynamic Coverage with Gaussian Processes

Devansh R. Agrawal and Dimitra Panagou

Abstract— This paper presents two algorithms for multi-
agent dynamic coverage in spatiotemporal environments, where
the coverage algorithms are informed by the method of data
assimilation. In particular, we show that by considering the
information assimilation algorithm, here a Numerical Gaussian
Process Kalman Filter, the influence of measurements taken
at one position on the uncertainty of the estimate at another
location can be computed. We use this relationship to propose
new coverage algorithms. Furthermore, we show that the con-
trollers naturally extend to the multi-agent context, allowing for
a distributed-control central-information paradigm for multi-
agent coverage. Finally, we demonstrate the algorithms through
a realistic simulation of a team of UAVs collecting wind data
over a region in Austria.

I. INTRODUCTION

A standard mission for swarms of robots is the collection

of information that varies both in time and in space over

a domain of interest. To collect such information optimally

in some sense, the team of robots must reason about the

currently available information, the target level of confidence,

the spatiotemporal evolution of the underlying information,

the sensing functional, as well as coordinate the actions of

the each robot.

The design of informative path planners and dynamic

coverage controllers has long been of interest [1]–[3], with

a variety of techniques proposed including Voronoi parti-

tioning [4], sampling approaches [5], [6], grid/graph based

approaches [7], [8] and ergodic search [9], [10].

However, a key limitation of these methods is that simpli-

fied heuristics are used to motivate the cost functions used

in the informative path planners. For example, the ergodic-

search approaches assume that a target spatial distribution is

defined. However there has been less work on how one can

obtain such a distribution in a principled manner.

The goal of this paper is to demonstrate how such in-

formation reward functions can be designed by explicitly

considering the information assimilation algorithm used. In

particular, when estimating a spatiotemporal field, a common

practice is to use Gaussian processes, and treat the spatiotem-

poral field as a realization of a stochastic partial differential

equation [11], [12]. In this case, the sensing function and

process noise model are well defined, and therefore the

coverage controller should respect those dynamics when

designing trajectories.
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This paper has three main contributions: (A) We use clar-

ity [13] (discussed below) to quantify the rate of information

collection at a position p due to measurements made by a

robot at a different position xr . This quantifies the value

of the robot being at a certain state xr. (B) We use this

relation to propose two coverage controllers that can be used

for information gathering. (C) Being feedback controllers,

we show how they can scale to the multi-agent setting. We

also demonstrate the algorithms using a realistic simulation,

where a team of aerial robots must explore a region of

Austria, and estimate the wind speed over the domain of

interest.

In our previous work, we demonstrated a connection

between coverage controllers and information assimilation

based on the Kalman Filter [13]. There, an information

metric called clarity was introduced to quantify the quality

of the information possessed about a stochastic variable.

In particular, if the value of the stochastic variable was

known exactly, (i.e., its differential entropy approached −∞),

the clarity of the random variable is 1. Similarly, if no

information was possessed about this variable, the clarity

is 0. In this paper, we use the properties of clarity and in

particular the clarity dynamics of an environment to address

contribution (A).

The paper is structured as follows. First, we present

various preliminaries, and explain the problem statement

addressed by this paper. Next, we discuss the information

assimilation model in detail, identifying a key function that

is used by the coverage controllers. Then we propose the

two coverage controllers, and derive the feedback controllers.

Finally, we present realistic simulations of information col-

lection in Austria.

II. PRELIMINARIES

A. Notation

Let Z be the set of integers. Let R,R≥0,R>0,R = R ∪
{−∞,∞} denote the set of reals, nonnegative reals, positive

reals, and extended reals respectively. Let S
n
++ denote the

set of symmetric positive definite matrices in R
n×n. Let I

denote the identity matrix. Let H(Rd) be the Hilbert Space

of functions with domain R
d.

B. Clarity

The notion of “information collection” used in this paper

is as follows. The goal is to estimate the value of the

spatiotemporal field over a given mission domain, i.e., to

decrease the uncertainty about the value of the field to a

specified threshold level. To quantify this, the information
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metric clarity was introduced in [13], and is based on

differential entropy.

Definition 1. [14, Ch. 8] The differential entropy h[X ] ∈
[−∞,∞] of a continuous random variable X with support

S and density ρ : S → R is

h[X ] = −
∫

S

ρ(x) log ρ(x)dx. (1)

Notice that when X has a singleton support set, h[X ] =
−∞. Clarity is defined in terms of differential entropy.

Definition 2. Let X be a n-dimensional continuous random

variable with differential entropy h[X ]. The clarity q[X ] ∈
[0, 1] of X is defined as:

q[X ] =

(

1 +
exp (2h[X ])

(2πe)n

)−1

. (2)

In other words, the clarity q[X ] about a random variable

X lies in [0, 1], with q = 0 corresponding to the limiting

case where the uncertainty in X is infinite, and q = 1
corresponding to the limiting case where X is perfectly

known in an idealized (noise-free) setting. For a scalar

Gaussian random variable X ∼ N (µ, σ2), the clarity is

q[X ] = 1/(1 + σ2).

In an estimation context, we use the clarity of our estimate

to quantify the quality of our estimate: as the clarity increases

towards 1, the uncertainty of our estimate decreases. In [13]

it was shown that when X is estimated using a Kalman filter,

the clarity dynamics of the estimate of X can be obtained

in closed form.

C. Gaussian Processes

A Gaussian Process (GP) [15, Ch. 2] is a (scalar) stochas-

tic process1

f(x) ∼ GP (m(x), k(x, x′)) (3)

that is fully defined by the mean and the kernel

m(x) = E[f(x)], (4a)

k(x, x′) = E[(f(x) −m(x))(f(x′)−m(x′))], (4b)

respectively, where m : D → R, k : D × D → R for

some domain D ⊂ R
d. When the kernel is stationary and

isotropic, i.e., it only depends on ‖x1 − x2‖, we overload k
as k(‖x1 − x2‖) = k(x1, x2). Given a set of measurements

{(xk, yk)}Nk=1, we can update our posterior estimate of f , as

described in [15, Ch. 2].

D. Spatiotemporal Gaussian Processes

Our goal is to estimate a spatiotemporal field, i.e., to

estimate a function f(t, p), f : R × D → R.2 Here t ∈ R

denotes time, and D ⊂ R
d is spatial domain of interest.

1Multivariate GPs can also be addressed, as in [16].
2For simplicity of exposition, we assume the spatiotemporal field has

scalar outputs. For multidimensional outputs, we repeat for each dimension
independently.

We start with the prior that

f(t0, p) ∼ GP (m0(p), k0(p, p
′)) (5)

for given mean and (spatial) kernel functions m0 : D → R,

k0 : D ×D → R.

As in [11], we assume the function f evolves according

to a linear stochastic differential process, and that (noisy)

measurements yk ∈ R are available at discrete times tk:

df(t, p) = Af(t, p)dt+ dW (t, p) (6a)

yk = Hkf(tk, p) + rk. (6b)

Here, p 7→ f(t, p) ∈ H(D), and A : H(D) → H(Rd) is

a linear differential operator describing the evolution of f .

W (t, p) is a Wiener processes, with joint diffusion operator

Qc(p, p
′).

The measurement at time tk is yk ∈ R
r, i.e., the value

of f measured by r robots, at positions Pr = {xi}ri=1.

Each measurement is perturbed by some rk ∼ N (0, Rk).
Therefore, the measurement operator Hk : H(Rd) → R

r is

the linear operator Hkf(tk, p) = [f(tk, x1), · · · , f(tk, xr)]
T .

This model is a infinite-dimensional linear Ito stochastic

differential equation [11]. In this work, we consider a special

case to simplify the analysis. In particular, we assume A = 0,

i.e., the spatiotemporal field is time-evolving only due to the

Wiener process, although the methods in [11], [12] can be

used to handle more general cases. Then, the corresponding

discrete time model is

f(tk, p) = f(tk−1, p) + wk−1(p) (7a)

yk = Hkf(tk, p) + rk, (7b)

where wk−1(p) ∼ GP (0, Q(p, p′; ∆t)), ∆t = tk − tk−1.

As before, rk ∼ N (0, Rk) for Rk ∈ S
r
++. For simplicity,

we assume wk−1(p) is a noise process independent at each

t and each p. Therefore Q(p, p′; ∆t) = σ2
t (p)δ(p − p′)∆t.

Although this model is in discrete time, it is still an infinite

dimensional system, and not computationally tractable.

In [12], the Numerical Gaussian Process Kalman Filter

(NGPKF) algorithm is developed make the above tractable.3

Kuper converts the infinite-dimensional model (7) into a

finite-dimensional state-space model, and then employs the

Kalman Filter for estimation. This reduces the computational

complexity from O(N3) to O(N) where N is the number

of measurements.

As in the standard Kalman Filter (KF), let mk2|k1
denote

the state estimate at time tk2 using measurements upto time

tk1 . Let Σk2|k1
denote the corresponding covariance matrix.

In the NGPKF [12], the state estimate is mk|k ∈ R
g

representing the estimate of f evaluated at a set of g grid

positions4 Pg = {pgi }gi=1 ⊂ D. The covariance is Σk|k ∈

3 [12] considers f evolving according to a stochastic differential equation
of the form (6), and also considers the effect of boundary conditions. Here,
we summarise the special case of A = 0 and without boundary conditions.

4The NGPKF algorithm can be used with arbitrarily placed points Pg .
In our simulations, we used a rectangular grid with a spatial resolution of
0.2 km.



S
g
++. The prediction step of the NGPKF is

mk|k−1 = mk−1|k−1 (8a)

Σk|k−1 = Σk−1|k−1 +Wk−1, (8b)

where Wk−1 is a diagonal matrix in R
g×g , with the (i, i)

element containing σ2
t (pi). The correction step is

Sk = CkΣk|k−1C
T
k + Vk (9a)

Lk = Σk|k−1C
T
k S

−1
k (9b)

mk|k = mk|k−1 + Lk(yk − Ckmk|k−1) (9c)

Σk|k = Σk|k−1 − LkSkL
T
k , (9d)

where

Ck = KrgK
−1
gg , Ck ∈ R

r×g, (10a)

Vk = Krr − CkKgr +Rk, Vk ∈ R
r×r, (10b)

Krr = K(Pr, Pr), Krr ∈ R
r×r, (10c)

Kgr = K(Pg, Pr), Kgr ∈ R
g×r, (10d)

Kgg = K(Pg, Pg), Kgg ∈ R
g×g, (10e)

Recall Pg is the set of NGPKF grid positions, and Pr

are the measurement positions. The matrix K(Pr, Pg) ∈
R

r×g denotes the kernel matrix with k(pri , p
j
g) in its (i, j)

entry. Note, for numerical reasons it is important to use a

numerically stable version of the Kalman Filter [17].

E. Ergodic Control

Ergodic control [9], [10] is a technique to generate tra-

jectories of a robot to cover a domain D = [0, L1] ×
· · · × [0, Ld] ⊂ R

d, such that the trajectories have a spatial

(position) distribution that closely matches a specified Target

Spatial Distribution (TSD), as explained below.

The TSD is a function φ : D → R representing a desired

probability density function for where the user wants the

robot to spend time. Given a trajectory ξ : [0, T ] → D, the

spatial distribution of the trajectory is defined as cξ : D → R,

cξ(p) =
1

T

∫ T

0

δ(p− ξ(τ)))dτ (11)

where δ : Rd → R is the Dirac delta function. In words,

given a trajectory ξ, cξ(p) is the fraction of time the robot

spent at a position p ∈ D. Then, the ergodicity of the

trajectory ξ w.r.t to the TSD φ, is E ∈ R,

E = ‖cξ − φ‖2
H−s (12)

where ‖·‖H−s is the Sobolev space norm of order s = (d+
1)/2, defined in [9]. The norm is defined by

‖cξ − φ‖2
H−s =

∑

l∈Nd

Λl(ĉl − φ̂l)
2 (13)

where Λl ∈ R is a weighting coefficient, and (̂·)l is the l-th
element of the discrete cosine transform of the function ·,
e.g.

φ̂l = 〈φl, bl〉 =
∫

p∈D

φl(p)bl(p)dp (14)

where bl : D → R is the l-th basis function. We refer the

reader to [9] for further details.

E is thus a function space norm measuring the difference

between the TSD and the spatial distribution of the trajectory.

The key benefit of the Sobolev norm is that it prioritizes

matching the low spatial frequency differences between c
and φ before the high spatial frequencies. This means that

the controllers have a multiscale-spectral nature, where they

prioritize covering the domain globally, before returning to

the gaps and covering them [9].

In [9] a feedback controller is derived for single and

double integrator robot models that minimizes the ergodicity.

Various extensions have been presented in, for example, [10],

[18] to address other robot models and other goals.

F. Problem Statement

In this paper, we study the design of multiagent coverage

controllers that exploit the information assimilation algo-

rithms used to model information gain. We consider a team

of robots that have a control affine dynamical system,

ẋr = F (xr) +G(xr)u (15)

where xr ∈ D is the robot state, u ∈ R
m is the control

input, and F : D → R
d, G : D → R

d×m. Given a feedback

controller u = π(t, xr), π : R × D → U , we assume the

closed-loop system ẋr = F (xr) + G(xr)π(t, xr) admits

unique solutions.

For the sake of brevity, in this paper we use xr ∈ D to

denote the robot state, i.e., only considering the position of

the robot. The methods can be extended to the case where the

robot state also contains additional states like the velocity.

Our goal is to answer two questions: (A) how does the

information assimilation algorithm inform the value of taking

measurements at a robot position xr ∈ D on the quality of

information at a different position p ∈ D, and (B) how should

one design coverage controllers to exploit that relationship?

Since the mission is a multiagent coverage problem, we also

need to ensure that the proposed coverage algorithms should

be scalable to a team of robots. We address each of these

two questions in the following two sections.

III. INFORMATION ASSIMILATION

For any coverage controller, two main functions are re-

quired: (A) the information decay rate at each p ∈ D when

the position p is not being sensed, and (B) the information

gain at each p ∈ D due to a measurement taken from

the robot’s position x ∈ D. In this section, we discuss

how the GP model of the spatiotemporal field can be used

to determine these two functions. Note, we consider the

hyperparameters of the GP to be specified and constant,

although some strategies for estimating these are provided

in the simulation section.

In this section we focus on the single position p ∈ D,

and track the evolution of our estimate of f(t, p). We denote

our estimate f̂(t, p) = N (m(t),Σ(t)), where m(t) ∈ R the

mean, and Σ(t) ∈ R>0 is the variance of the estimate. At

discrete times tk, we denote m(tk) = mk, and similarly for



Σ. As in the standard Kalman Filter, due to the measurements

and process noise, m,Σ will vary with time.

A. Information Decay

Recall our discrete-time model,

f(tk, p) = f(tk−1, p) + wk−1(p), (16)

where wk−1(p) ∼ GP (0, σ2
t (p)δ(p − p′)∆t). σt : D → R

is the strength of the Wiener process. By writing σt(p) we

emphasize that the strength of the Wiener process can be

different in different positions across the domain. Notice that

due to the δ(p−p′), the noise added at each p is independent

of the noise any other p′. Therefore, our prediction model

takes the form

mk = mk−1, Σk = Σk−1 + σ2
t∆t (17)

B. Information Gain

Next, we must consider the influence of a measurement

from a robot position xr ∈ D on the quality of the estimate

at any position p ∈ D. In [13], the model

yk = C(xr , p)f(t, p) + rk, rk ∼ N (0, Rk) (18)

was used, where

C(xr , p) =

{

1 if ‖xr − p‖ ≤ d

0 else
(19)

representing the fact that the measurement yk depends on

the value of the spatiotemporal field at p only if the robot is

sufficiently close to p. While this is intuitively reasonable, it

is not clear how d should be chosen given the properties of

the spatiotemporal field.

By modeling the spatiotemporal field through a Gaussian

Process, the measurement of f at some position xr ∈ D is

correlated with the value of f at another position p ∈ D.

We can use the spatial kernel of the GP to compute this

correlation, and update our estimate of f at p using the

measurement at xr.

Notice that yk is the measurement of f(tk, xr),

yk = f(tk, xr) + rk, rk ∼ N (0, Rk), (20)

but due to the correlation between f(tk, p) and f(tk, xr), yk
can equivalently be interpreted as measurement of f(tk, p),

yk = C(xr , p)f(tk, p) + vk, vk ∼ N (0, Vk), (21)

where using (9),

C(xr , p) = KrgK
−1
gg =

k(xr , p)

k(p, p)
(22)

V (xr , p) = Krr − C(xr, p)Kgr +Rk

= k(xr , xr)−
k(xr , p)k(p, xr)

k(p, p)
+Rk. (23)

Therefore, using (9), the discrete-time Kalman gain and

covariance update equations can be determined.

C. Quantifying Information Gain via Clarity Dynamics

Next, we wish to characterize the clarity dynamics, i.e., the

time-evolution of the clarity about the spatiotemporal field

at any position p ∈ D due to measurements taken by a robot

at position xr ∈ D.

First, we must convert our discrete-time model into a

continuous-time model. Recall ∆t > 0 is the sampling

period. The main property we use is that for a Wiener process

Wt, Wt2 −Wt1 ∼ N (0, t2 − t1).

Using (17), the continuous-time model for f(t, p) takes

the form

ḟ(t, p) = w(t), w(t) ∼ N (0,W (p)) (24)

where W (p) = σ2
t (p), and using (21), the continuous-time

measurement model is

y = C(xr , p)f(t, p) + v(t), v(t) ∼ N
(

0,
V (xr, p)

∆t

)

(25)

where we divided V (xr , p) by ∆t to account for the mea-

surement sampling period.

This allows us to define the clarity dynamics of the quality

of our estimate of f(t, p):

q̇ =
C(xr , p)

2∆t

V (xr, p)
(1− q(t, p))2 −W (p)q(t, p)2 (26)

This expression was first derived in [13, Eq. 12]. To simplify

the notation, let S : D ×D → R be

S(xr, p) =
C(xr , p)

2∆t

V (xr , p)
. (27)

In the case of a stationary and isotropic kernel k(x, x′) =
k(‖x− x′‖), the expression simplifies to

S(xr, p) =
k(‖xr − p‖)2∆t

k(0)2(1 +Rk)− k(‖xr − p‖)2 (28)

If d 7→ k(d) is monotonically decreasing, e.g. in the Matern

and Squared Exponential kernels, S(xr , p) is maximized at

xr = p, implying that the rate of increase in clarity about

p is maximized when the robot is at xr = p. This is not in

general true, since for example in periodic or polynominal

kernels, S(xr, p) may be maximized for some xr 6= p.

To summarize, we are solving an information gathering

problem where the spatiotemporal information to be col-

lected is modeled using a Gaussian Process. To define a

suitable coverage algorithm, we require a method to quantify

the value of taking a measurement at some robot position

xr ∈ D on the information gain at all points p ∈ D. This is

captured by the clarity dynamics, i.e., the relationship that

quantifies the rate of information gain as:

q̇ = S(xr, p)(1− q(t, p))2 −W (p)q(t, p)2, (29)

The key function is S, as defined in (27). Notice that only

the first term S(xr, p) is controllable, since it is the only

term that depends on the robot’s position xr.



IV. COVERAGE CONTROLLERS

In this section, we derive two coverage controllers that

use (29). The direct method aims to choose a control input

that maximizes the rate of increase in the total clarity inte-

grated over the domain D. The indirect method determines

the time that the robot should spend at each position in the

domain to achieve a target clarity, and then uses Ergodic

control to compute the control input.

A. Direct Method

Consider a cost function of the form

J(t) = ‖q(·)− q(t, ·)‖2ℓ2 =

∫

p∈D

(q(p)− q(t, p))2dp (30)

i.e., the ℓ2-norm of the difference between the current clarity

q(t, p) and the target clarity q(p). Then, to determine the best

control input, the objective is to minimize J over a short

horizon δt in the future:

J(t+ δt) = J(t) + J̇(t, x)δt2 +
1

2
J̈(t, x, u)δt2 (31)

where the dependency on u first shows up in the J̈ term. This

high-relative degree behaviour is a consequence of the fact

that the clarity dynamics (29) depend on x, not ẋ. Therefore

the second derivative of J must be taken for the control input

to appear in the expressions. This behaviour is commonly

observed in the literature on coverage control, as in [3, Ch.

2] and in [9].

In [3], a control input to minimize J̈(t, x, u) is derived,

and used as the coverage controller. A differentiable sensing

functional (an analog of S(xr , p) defined above) is used

with the generalized transport theorem to compute J̈(t, x, u).
However this approach often leads to local minima, where

J̈(t, x, u) becomes independent of u. This happens when all

of the local information has been collected, and there is no

preference for the controller to move in one direction over

the other. To address this, [3] proposed combining the local

search strategy with a global strategy, where the controller

would choose a new global waypoint when the local control

strategy reached a local minima.

We propose an extension of the controller in [3] to

address two of its limitations. In particular, we propose

using the sensing function S(x, p) derived in the previous

section to compute J, J̇, J̈ . Second, we replace ℓ2 norm in

the cost function with the H-norm proposed by [9]. This

causes the control input to be selected to maximize global

clarity levels before local clarity levels, i.e., the lower spatial

frequencies of the clarity are minimized before the higher

spatial frequencies.

Consider the cost function

J(t) = ‖q(·)− q(t, ·)‖2H−(d+1)/2 =
∑

l∈Nd

Λl

(

q̂l − q̂l(t)
)2

(32)

where q̂l = 〈q, bl〉, q̂l(t) = 〈ql(t, ·), bl〉. Recall the notation

〈a, bl〉, Λl was defined in Section II-E. After some algebraic

calculations, one can show that the first and second time

derivatives of J are written as:

J̇(t, x) =
∑

l∈Nd

−2Λl(q̂l − q̂l(t)) ˙̂ql(t, x) (33)

J̈(t, x, u) =
∑

l∈Nd

2Λl

(

˙̂q2l (t, x)− (q̂l − q̂l(t))¨̂ql(t, x, u)
)

(34)

where ˙̂ql(t, x), ¨̂ql(t, x, u) are as follows:

˙̂ql =
d

dt

∫

p∈D

q(t, p)bl(p)dp (35)

=

∫

p∈D

(

S(x, p)(1 − q(t, p))2 −W (p)q(t, p)2
)

bl(p)dp

(36)

where S is as defined in (27). Similarly,

¨̂ql =
d2

dt2

∫

p∈D

q(t, p)bl(p)dp (37)

= B̂l(t, x)ẋ +O.T. (38)

where ẋ = F (x)+G(x)u and B̂l(t, x) ∈ R
1×d is as defined

as

B̂l(t, x) =

∫

p∈D

(1 − q(t, p))2
∂S

∂x
(x, p)bl(p)dp (39)

=

〈

(1− q(t, ·))2 ∂S
∂x

(x, ·), bl
〉

(40)

and O.T. collects all other terms that do not depend on ẋ
(and therefore u). Therefore, we have

J(t+ δ) =
1

2
J̈(t)δ2 +O.T. (41)

= δ2
∑

l∈Nd

−Λl(q̂l − q̂l(t))B̂l(t, x)ẋ +O.T. (42)

= −δ2L(t, x)(F (x) +G(x)u) +O.T. (43)

where

L(t, x) =
∑

l∈Nd

Λl(q̂l − q̂l(t))B̂l(t, x). (44)

Therefore, the choice of u that minimizes J(t+ δ) yields a

feedback controller πdir : R×D → U ,

πdir(t, x) = argmin
u∈U

− L(t, x)G(x)u (45)

Thus, if U = {u ∈ R
m : ‖u‖ ≤ umax}, and L(t, x)G(x) 6=

0,

πdir(t, x) = umax

G(x)TLT (t, x)

‖L(t, x)G(x)‖ . (46)

Proving that L(t, x)G(x) 6= 0 for any t, x is non-trivial,

and will be studied in future work.

B. Indirect Method

The second approach is inspired by ergodic control. Er-

godic control uses a Target Spatial Distribution (TSD) to

determine the feedback control law, as discussed in Sec-

tion II-E. Here we derive a principled method to construct



the TSD based on the information assimilation algorithm

discussed in Section III.

The key idea is to set the TSD to be the time required for

the clarity of our estimate of f to increase from its current

value to a specified target clarity q(p), assuming the robot

was making measurements from x = p.

To compute this, recall the clarity dynamics in (29). As

noted in [13], the equation admits a closed-form solution.

Using the notation of this paper, the clarity of our estimate

of f(t, p) increases from an initial value of q0 according to

q(t) = q∞

(

1 +
2γ1

γ2 + γ3 exp (2γ0Qt)

)

(47)

where γ0 =
√

S(x, p)/W (p), q∞ = γ0/(1 + γ0), γ1 =
q∞ − q0, γ2 = γ1(γ0 − 1), γ3 = (γ0 − 1)q0 − γ0.

Assuming q0 ≤ qf < q∞, the expression can be inverted

to yield

τ(q0, qf ) =
1

2γ0Q
log

(

2γ1q∞ + γ2(q∞ − qf )

γ3(qf − q∞)

)

(48)

which is a closed-form expression for the amount of time a

robot needs to spend at position x such that the clarity of p
increases from q0 to qf .

Therefore, given the target clarity distribution q(p), and

the current clarity distribution q(t, p), the TSD at time t can

be specified as follows:

TSD(t, p) =

{

τ(q(t, p), q(p)) if q(t, p) < q(p)

0 else
(49)

Finally, we can use the ergodic control method described

in [9] to design a feedback controller for the system,

πind(t, x) = πergo(t, x, TSD) (50)

This method is similar to the coverage controller in [19],

except that the TSD is computed based on the NGPKF

information assimilation algorithm. More specifically, [19]

utilizes a heuristic method to construct the C(x, p), R(x, p)
and Q(p) functions, where as in this paper we construct and

demonstrate principled methods to obtain these functions.

C. Extension to Multi-Robot Coverage Control

Our proposed coverage controllers have been presented for

the single-robot cases above. Here we discuss the extension

and implementation of these methods in the multi-agent case,

where multiple robots have to decide how to move to collect

information. We assume that they are able to synchronize

their information by sharing q(t, p) over a centralized setting,

i.e., that they are connected over a complete graph so that

each robot has access to the clarity maps of its neighbors.

The extensions to distributed settings are left for future work.

Notice that both proposed controllers are feedback con-

trollers, depending on the robot’s position, and the map of

the clarity over D. Therefore, assuming each agent shares

access to the clarity map, the control input for each agent i
can be computed simply as

ui = π(t, xi) (51)
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Fig. 1. Wind data from WegenerNet [20]. (a) Wind speed and direction on
Jan 1 2023, 00:00, (b) Variogram showing the spatial correlation within the
data, with the fit from two kernels, the Matern-1/2 kernel and the squared
exponential kernel.

where xi denotes the position of the i-th agent, and π ∈
{πdir, πind} can be either control strategy. In the indirect

approach, we must also share the history of positions visited

by the agents. Here, we can also impose other constraints, for

example safety constraints using CBFs, or energy constraints

using the strategy in [19].

As the robots move using the coverage controllers, the

robots make measurements of the spatiotemporal field from

their respective positions. These measurements are assim-

ilated into a single estimate of the spatiotemporal field

using the NGPKF algorithm. The information assimilation

is currently performed centrally, although future work will

look into distributed methods of maintaining the estimate.

Furthermore, note that the amount of data communicated

is minimal. Consider a central robot performing the NGPKF

algorithm. Each robot streams measurements to the central

robot, effectively sending a tuple (t, xi, yi) that only con-

sists of d + 2 floats for each measurement. The central

robot performs the data assimilation, and creates an updated

clarity map. Notice that in both the direct and the indirect

approaches, only the Discrete Cosine Transform (DCT) of

the clarity map is needed to compute the control inputs.

Therefore, the central robot can perform the DCT, and only

send a small number of the most significant components of

the DCT back to each robot.
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Fig. 2. Simulation results. (a) shows the ground truth wind speed at the end of the simulation wind. (b) shows the mean clarity deficit over the simulation
horizon. (c-e) show the behaviour of the direct method. (f-h) show the behaviour of the indirect method. (c, f) show the reconstructed wind speed. Only
the x-component is visualized in the interest of space. (d, e, g, h) show the trajectories of the 10 robots after 8 minutes and after 60 minutes.

V. SIMULATIONS

In this section, we report simulation results of an infor-

mation gathering mission. As a prototypical example, we

consider the collection of wind data using a team of 10 aerial

robots. The robots perform a 1 hour mission, and we aim to

maximize the clarity of the wind field over the domain by

the end of the mission. Our evaluation metric is both the

accuracy of the reconstruction, as well as the average clarity

deficit, i.e., the average of max (0, q(p)− q(t, p)) over the

mission domain.

The mission domain is a 12.7× 6.3 km2 region of south-

eastern Austria, located near 46.93◦ N, 15.90◦ E, chosen

because of a high quality ground-truth data set available

through WegenerNet [20]. The dataset provides wind speeds

over the domain at a resolution of 100 m and 30 minutes.

The mission domain is particularly challenging due to its

high weather and climate variability [20]. Over the domain

considered, the maximum wind speed is less than 13 m/s.

Each robot is capable of measuring the local wind speed

and direction, at a sampling period of 5 seconds. Each

measurement is perturbed by noise with σmeas =
√
Rk =

0.5 m/s. The robots are assumed to have a top speed of

30 m/s, modeled as single integrators. To construct the wind

field estimate from all the measurements, we use the NGPKF

algorithm, using a grid with spatial resolution of 200 m.

The spatial and temporal hyperparameters were estimated

using techniques from geostatistics [21], [22]. In particular,

we constructed a variogram of the dataset and used a least-

squares fit to both the Matern-1/2 and the Squared Exponen-

tial kernels. The results of the fit are depicted in Figure 1b,

where the Matern kernel fits the data better. The resulting

kernel is of the form k(x, x′) = σ2 exp (−‖x− x′‖ /L),
where σ = 3.49 m/s, L = 0.944 km. Fitting the kernel

using the variogram was computationally much faster and

more accurate than the nonlinear minimization of the log-

likelihood method of [15], and the details of the procedure

are listed in the appendix. The temporal length scale was

estimated independently at each grid position, by computing

σ2
t (p) = var

[

f(t2,p)−f(t1,p)
t2−t1

]

from the WegenerNet data.

Simulations were run using both the direct and the indirect

control strategies, and the results are summarized in Figure 2.

Both methods explore the environment, and collect informa-

tion. From Fig b. we can see that the indirect method seems

to decrease the mean clarity deficit faster than the direct

method in these simulations.

Comparing Fig. 2a, c, f one can see that the wind speed is



estimated well by both methods, although the direct method

captures less information near the edges of the domain. This

results in a poorer estimate near the boundaries when using

the direct method.

The trajectories of the two methods are remarkably dif-

ferent - in the direct method, the trajectories are jagged, and

the controller tends to rapidly move around as it prioritizes

collecting local information first. This is because of the ∂S
∂x

term in (40), which emphasizes the collection of data locally.

In contrast, the indirect method creates smooth trajectories

that cover the domain.

In Fig. 2b, we also compare the behaviour when using 3

robots against the behaviour when using 10 robots. We plot

the mean clarity deficit against time for both algorithms with

3 and 10 robots, and we can see that, as expected, when

there are 10 agents, the mean clarity deficit is lower than

when there are only 3 agents. Fig 2 c-h show the behaviour

with 10 agents.

VI. CONCLUSIONS

In conclusion, this paper addresses the design of co-

operative multiagent coverage controllers, where the infor-

mation is shared centrally, but the control decisions are

made by each robot independently. We identified a gap

between information assimilation algorithms and coverage

controllers. Therefore we proposed a method to quantify the

value/impact that taking measurements in a domain has on

the clarity of our estimate of other parts of the domain.

To this end we utilized Gaussian Processes to model the

environment, as well as our earlier work on the clarity

dynamics, which in effect quantifies the information gain

about the domain due to measurements. We saw that the

relative value of measurements is captured by a function

S. We used this function to propose two new coverage

controllers that, although qualitatively different, still cover

the domain and collect information accurately. The concepts

were demonstrated through a simulation study of collecting

information about a wind field.

A key limitation of this work is that we assumed the spatial

and temporal hyperpararameters of the Gaussian Process

were fixed and known apriori. Although a method was

described to obtain these hyperparameters from data, in our

future work we will aim to develop an online method to

estimate the hyperparameters, and chose trajectories that

improve the quality of the hyperparameters. Furthermore,

we believe further attention should be placed on the nu-

merical implementation of the proposed direct method, to

investigate methods to obtain smooth trajectories. Finally, it

would also be interesting to look into methods to ensure

safety of the robots with a safety constraint that depends

on the information collected online. In such a scenario, the

objective of collecting information must be weighed against

the importance of not violating safety constraints.
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