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Abstract— This paper introduces the notion of an Input
Constrained Control Barrier Function (ICCBF), as a method to
synthesize safety-critical controllers for nonlinear control-affine
systems with input constraints. The method identifies a subset
of the safe set of states, and constructs a controller to render the
subset forward invariant. The feedback controller is represented
as the solution to a quadratic program, which can be solved
efficiently for real-time implementation. Furthermore, we show
that ICCBFs are a generalization of Higher Order Control
Barrier Functions, and thus are applicable to systems of non-
uniform relative degree. Simulation results are presented for the
adaptive cruise control problem, and a spacecraft rendezvous
problem.

I. INTRODUCTION

Many cyber-physical systems are safety critical, that is,
they require guarantees that safety constraints are not vio-
lated during operation. Safety is often modeled by defining a
safe subset of the state space for a given system, within which
the state trajectories must evolve. Recently, set-theoretic
methods, such as Control Barrier Functions (CBFs) have
become increasingly popular as a means of constructing and
verifying such controllers [1]–[4].

Prior work on CBFs has largely focused on systems where
a sufficiently large control authority is available to ensure
forward invariance of the safe set. However in the presence
of input constraints, only a subset of the safe set may be
rendered forward invariant, which we term the inner safe set.
A few methods have been proposed to find the inner safe set.
These include reachability analysis by solving a Hamilton-
Jacobi equations [3], [5] and Sum-of-Squares (SOS), which
employ the positivstellensatz theorem to provide a certificate
of safety [6], [7]. Both methods scale poorly with the
dimension of the state-space. Some methods have also been
proposed for specific classes of systems, e.g. Euler-Lagrange
systems [8] or mechanical systems in a manifold [9].

In this paper, we introduce the notion of an Input Con-
strained Control Barrier Function (ICCBF). We show that an
ICCBF guarantees that an input constrained controller can
render the super-level set of the ICCBF forward invariant.
Furthermore, we show that ICCBFs represent a general-
ization of Higher Order CBFs (HOCBFs) [10], enabling
synthesis of input-constrained controllers for safety functions
of non-uniform relative degree. Finally, the method is applied
to an adaptive cruise control problem [11], and a spacecraft
rendezvous problem, demonstrating that ICCBFs define a
safe controller that respects input constraints.
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Fig. 1. Visual representation of ICCBF method. The safe set S and two
intermediate sets C1 and C2 are drawn. The final inner safe set C∗ is the
intersection of each of these sets, and can be rendered forward invariant.

II. PROBLEM FORMULATION AND PRELIMINARIES

Notation: We denote the set of real numbers R and non-
negative reals R+. A continuous function α : [0, a)→ [0,∞)
is class-K if it is strictly increasing, and α(0) = 0. The Lie
derivative of h(x) along f(x) is denoted Lfh(x) = dh

dxf(x).
Int(C) and ∂C denote the interior and boundary of a set C.

A. Problem Setup

Consider a nonlinear, control-affine dynamical system,
with state x ∈ X ⊂ Rn and control input u ∈ U ⊂ Rm

ẋ = f(x) + g(x)u, (1)

where f : X → Rn, g : X → Rn×m are sufficiently smooth,
as will be discussed in III-B. We assume these functions are
known, and the system state is measured exactly. Under a
Lipschitz continuous feedback law u = π(x), the closed-
loop system is

ẋ = f(x) + g(x)π(x). (2)

We define a state x as safe, if it lies in a set S, the
0-superlevel set of a continuously differentiable function
h : X → R:

S , {x ∈ X : h(x) ≥ 0} (3)

∂S , {x ∈ X : h(x) = 0} (4)

Int(S) , {x ∈ X : h(x) > 0} (5)

The set S is referred to as the safe set. We assume this set
is closed, non-empty and simply connected.

Definition 1. A set S is rendered forward invariant by a
feedback controller π : S → U , if for the closed-loop
system (2), x(0) ∈ S implies x(t) ∈ S for all t ≥ 0.
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Due to input constraints however, there may not exist
a controller which renders the safe set forward invariant
(Example 1). We propose the definition of an inner safe set.

Definition 2. A non-empty closed set C∗ is an inner safe set
of the safe set S for the dynamical system (1), if C∗ ⊆ S
and there exists a feedback controller π : C∗ → U such that
C∗ is rendered forward invariant by π.

Example 1. Consider the following scalar dynamical system
with input and safety constraints:

ẋ = x+ u, U = [−1, 1], S = {x ∈ R : x ≤ 2}

i.e. h(x) = 2 − x. Now consider the boundary state
x = 2 ∈ S. Since

ḣ = −2− u =⇒ ḣ ≤ −1 ∀u ∈ U ,

i.e., all closed-loop trajectories starting at x(0) = 2 leave the
safe set. Thus S cannot be rendered forward invariant. The
set C∗ = {x : x ≤ 1} is an inner safe set. 4

Now, we can state the main objective of this paper:

Problem 1. Given the system (1), find a closed set C∗ ⊆ S
and a feedback controller π : C∗ → U , such that for
any x(0) ∈ C∗, the closed-loop trajectories of (2) satisfy
x(t) ∈ C∗ for all t ≥ 0.

In words, the objective is to find a subset of the safe
set, and a corresponding feedback controller that renders the
subset forward invariant.

B. Set Invariance

Nagumo’s theorem provides a necessary and sufficient
condition for the forward invariance of a set S . In this work,
Nagumo’s theorem simplifies to:

Lemma 1. Consider the system (1). Let the set S be defined
by a continuously differentiable function h : X → R, as per
(3-5). Consider a Lipschitz continuous feedback controller
π : S → U , such that for any initial condition x(0) ∈ S ,
the closed-loop system (2) admits a globally unique solution.
Then set S is forward invariant if and only if

(6)Lfh(x) + Lgh(x)π(x) ≥ 0, ∀x ∈ ∂S.

In [1], [2], a stronger notion of the control barrier function
is introduced:

Definition 3 (Control Barrier Function [1]). Let
S ⊂ X ⊂ Rn be the superlevel set of a continuously
differentiable function h : X → R. h is a Control Barrier
Function (CBF) if there exists an extended class-K∞
function α such that for the control system (1):

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)) (7)

for all x ∈ X .

Lemma 2 ( [1], Theorem 2). Let S ⊂ Rn be a set defined
as the superlevel set of a continuously differentiable function
h : X ⊂ Rn → R. If h is a CBF on X , and dh/dx(x) 6= 0

for all x ∈ ∂C, then any Lipschitz continuous controller
π(x) ∈ KCBF, where

KCBF(x) = {u ∈ U : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0},
(8)

for the control system (2), renders the set S safe.

In this paper, we focus on cases where h(x) defining the
safe set S is not a valid control barrier function.

III. INPUT CONSTRAINED CONTROL BARRIER
FUNCTIONS

In this section we define Input Constrained Control Barrier
Functions (ICCBFs). To aid the reader, first the method is
explained conceptually, and formal definitions are presented
second.

A. Motivation

Suppose the safe set S associated with h cannot be
rendered forward invariant by any feedback controller π(x),
since there exist some states where it would require u 6∈ U
to render safe. We wish to remove these states from S. We
define a function b1 : X → R and a set C1 (visualized in
Figure 1) as follows

b1(x) = inf
u∈U

[Lfh(x) + Lgh(x)u+ α0(h(x))] (9)

C1 = {x ∈ X : b1(x) ≥ 0} (10)

where α0 is some user specified class-K function. Since an
infimum over U is taken, b1 only depends on x, and not u.

The set C1 has a useful property: Suppose there exists a
point x ∈ ∂S and x ∈ C1, i.e., h(x) = 0 and b1(x) ≥ 0.
Then, from (9),

x ∈ ∂S ∩ C1 =⇒ inf
u∈U

[Lfh(x) + Lgh(x)u] ≥ 0 (11)

=⇒ Lfh(x) + Lgh(x)u ≥ 0, ∀u ∈ U . (12)

Thus the closed-loop trajectory cannot leave S through x.
Notice that if there exists a Lipschitz continuous controller
π which renders C1 forward invariant, it is immediate S ∩C1
is also forward invariant: any x(t) that reaches the boundary
∂S must lie in C1 (by assumption on π), and thus by (12),
x(t) also cannot leave S.

The problem now is to find the controller that renders C1
forward invariant. If this cannot be done, the steps can be
repeated: define b2(x) = infu∈U [ḃ1(x, u) + α1(b1(x))] and
C2 = {x ∈ X : b2(x) ≥ 0}. Now any controller that renders
C2 forward invariant also renders C1 ∩ C2 forward invariant,
and therefore the set C∗ = S∩C1∩C2 is also forward invariant
by the same controller. This idea is formalized in the next
subsection.

B. ICCBFs

Consider the dynamical system (1) with bounded control
inputs u ∈ U and a safe set S defined by a function
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h : X → R, as per (3-5). We define the following sequence
of functions:

b0(x) = h(x) (13a)
b1(x) = inf

u∈U
[Lfb0(x) + Lgb0(x)u+ α0(b0(x))] (13b)

...
bN (x) = inf

u∈U
[LfbN−1(x) + LgbN−1(x)u+ αN−1(bN−1(x))],

(13c)

where each αi is a class-K function, and N is a positive
integer. We assume the functions f, g, h are sufficiently
smooth such that bN and its derivative are defined. The time
derivative ḃi = Lfbi(x)+Lgbi(x)u is still affine in u. Next,
we define a family of sets,

C0 = {x ∈ X : b0(x) ≥ 0} = S (14a)
C1 = {x ∈ X : b1(x) ≥ 0} (14b)

...
CN = {x ∈ X : bN (x) ≥ 0}. (14c)

The intersection of these sets is C∗, assumed closed, non-
empty and without isolated points:

C∗ = C0 ∩ C1 ∩ ... ∩ CN . (15)

Definition 4. For the dynamical system (2) with safe
set S and continuously differentiable class-K functions
α0, ..., αN−1, if there exists a class-K function αN such that

sup
u∈U

[LfbN (x) + LgbN (x)u+ αN (bN (x))] ≥ 0 ∀x ∈ C∗,

(16)

then bN is an Input Constrained Control Barrier Function
(ICCBF).

Note, this does not require bN to be a CBF on CN . The
definition only requires condition (16) to hold for x ∈ C∗, a
subset of CN .

Theorem 1 (Main Result). Given the input constrained
dynamical system (1), if bN is an ICCBF, then any Lip-
schitz continuous controller π : C∗ → U such that
π(x) ∈ KICCBF(x), where

KICCBF(x) = {u ∈ U :

LfbN (x) + LgbN (x)u ≥ −αN (bN (x))} (17)

renders the set C∗ ⊆ S (15) forward invariant.

Proof. Since u is a Lipschitz continuous controller, the
closed-loop system (2) is also Lipschitz continuous. To show
forward invariance of C∗, we use Nagumo’s theorem on the
closed-loop system. In particular, we show that

x ∈ C∗, π(x) ∈ KICCBF(x) and bi(x) = 0

=⇒ dbi
dx

[f(x) + g(x)π(x)] ≥ 0, (18)

We show (18) holds for each i ∈ I(x) = {i : bi(x) = 0}:

Cases i ∈ {0, ..., N − 1}: Consider any x ∈ C∗ ∩ ∂Ci.
Since C∗ ⊆ Ci+1, x ∈ ∂Ci ∩ Ci+1. By (13, 14),

inf
u∈U

[Lfbi(x) + Lgbi(x)u] ≥ 0

∴ Lfbi(x) + Lgbi(x)u ≥ 0, ∀u ∈ U (19)

and since π(x) ∈ KICCBF(x) ⊆ U , (18) is satisfied.
Case i = N : Consider x ∈ C∗ ∩ ∂CN . Since bN is an

ICCBF and bN (x) = 0, by (14c, 17),

LfbN (x) + LgbN (x)π(x) ≥ 0 ∀π(x) ∈ KICCBF(x), (20)

thus satisfying (18).
In conclusion, we have shown that condition (18) is

satisfied for all i ∈ I(x), and therefore the conditions of
Nagumo’s theorem are satisfied, completing the proof.

Remark 1. The practical value of this construction is that
for a given system, a set S of safe states of practical
importance can be specified, which may not be rendered
forward invariant under the given system dynamics. By
using ICCBFs, we remove some states from the set S, and
construct an inner set for which we can find a controller that
renders it forward invariant.

Remark 2. A quadratic program based feedback con-
troller can be used for polytopic input constraints,
U = {u : Pu ≤ q}:

π(x) = argmin uTu

subject to LfbN (x) + LgbN (x)u ≥ −αN (bN (x))

Pu ≤ q,

provided suitable regularity conditions hold, for instance
LgbN (x) is linearly independent of the rows of P [12], [13].
Note, this QP is always guaranteed to be feasible.

We would like to note a useful special case, the simple
ICCBF:

Definition 5. In the above construction, if C∗ is a strict
subset of CN , i.e., C∗ ⊂ CN , then bN is a simple ICCBF.

Theorem 2. For the dynamical system (1), if bN is a simple
ICCBF, all Lipschitz continuous controllers π : C∗ → U
render the set C∗ forward invariant.

Proof. By definition, since bN is a simple ICCBF, C∗ is a
strict subset of CN . Then C∗ ∩ ∂CN = ∅, the null set, i.e.,
there does not exist a x ∈ C∗ such that bN (x) = 0. Following
Theorem 1, we do not need to consider case where i = N in
condition (18). The remaining cases, with i ∈ {0, ..., N −1}
satisfy condition (18) for all π(x) ∈ U . Therefore, any
Lipschitz continuous π : C∗ → U admits globally unique so-
lutions and satisfies condition (18), completing the proof.

Intuitively, the existence of a simple ICCBF represents a
system where the dynamics at the boundaries of C∗ are such
that the unforced dynamics f(x) dominate the forcing term
g(x)π(x) in driving the system towards safety. If a simple
ICCBF is found, no safety critical controller is needed for
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the system to ensure state trajectories remain within the safe
set, provided the system is initialized within C∗.

Remark 3. Higher Order CBFs, as in [10], are a special
case of ICCBFs. For instance, in systems of relative degree
2, Lgh(x) = 0 for all x ∈ S. In this case, in the construction
of ICCBFs we have

b1(x) = inf
u∈U

[Lfh(x) + Lgh(x)u+ α0(h(x))]

= inf
u∈U

[Lfh(x) + α0(h(x))]

= Lfh(x) + α0(h(x)) (21)

which is exactly the function defined in [10]. This repeats
for higher relative degrees. For a system with relative degree
ρ, the first ρ expressions of ICCBFs are identical to those of
HOCBFs. Moreover, ICCBFs can handle systems with non-
uniform relative degree, by choosing N greater or equal to
the largest relative degree of the system in S.

Remark 4. The search (over integers N and class-K func-
tions αi) and validation for ICCBFs (i.e., verifying (16))
can be complicated, as is the case with Lyapunov functions
in general. For practical implementation, we can solve the
following optimization problem:

γ = minimize
x∈C∗

supu∈U [ḃN (x, u) + αN (bN (x))] (22)

By the definition, bN is an ICCBF if and only if the
optimization problem is feasible, with solution γ ≥ 0. Since
this optimization is nonlinear, unless a guaranteed global
optimizer is used, this can only be used to invalidate bN
as a ICCBF. For our experiments, we manually checked a
few (approx. 6) N and αi until γ ≥ 0. Whether a finite
N exists for a given dynamical system such that bN is an
ICCBF remains an open question.

IV. SIMULATIONS

A. Adaptive Cruise Control

As a demonstration, we apply ICCBFs to the Adaptive
Cruise Control (ACC) problem of [11]. Consider a point-
mass model of a vehicle moving in a straight line. The
vehicle is following a vehicle d distance in-front, moving
at a known constant speed v0. The objective is to design
a controller to accelerate to the speed limit but prevent the
vehicles from colliding.

As in [11], the safety constraint is specified as d ≥ 1.8v.
Defining the state x = [d, v]T , the dynamical model is[

ḋ
v̇

]
=

[
v0 − v
−F (v)/m

]
+

[
0
g0

]
u, U = {u : |u|≤ 0.25}

where u is the control input, F (v) = f0+f1v+f2v
2 models

resistive forces on the vehicle, m is the mass of the vehicle,
g0 is acceleration due to the gravity. The safe set S is

S = {x ∈ X : h(x) = x1 − 1.8x2 ≥ 0}

and we can verify that S is not forward invariant under the
input constraints. Thus, h is not a CBF, and we will apply
ICCBFs to find an inner safe set.

We choose, arbitrarily, N = 2 and the class-K functions

α0(h) = 4h, α1(h) = 7
√
h, α2(h) = 2h,

to define the functions b1, b2 and sets C1, C2. To (approx-
imately) verify that b2 is an ICCBF, the optimization (22)
was used, and γ = 2.33 was found.

The sets are visualized in Figure 2. The interior of a set
is shaded, and the boundary of the set is indicated with a
thick line. Where there exists a feasible control input to keep
trajectories within the set, the line is solid, and where no
feasible control input will keep trajectories within the set, the
line is dashed. C∗, the intersection of S, C1, C2, is visualized
in Figure 2(d). The following controller is used:

π(x) = argmin
u∈R

1
2 (u− πd(x))

2

subject to Lfb2(x) + Lgb2(x)u ≥ −2b2(x)
u ∈ U

where πd(x) is the desired acceleration. The desired accel-
eration is computed using the Control Lyapunov Function
V (x) = (x2 − vmax)2, where vmax = 24 is the speed limit.
Thus, πd(x):

LfV (x) + LgV (x)πd(x) = −10V (x)

We compare our controller to the CLF-CBF-QP [11]:

argmin
u∈R,δ∈R+

1
2u

2 + 0.1δ2

subject to LfV (x) + LgV (x) ≤ −10V (x) + δ
Lfh(x) + Lgh(x)u ≥ −2h(x)

and clip of the solutions of the QP such that u∗(x) lies in
the range of feasible control inputs.

In Figures 2 (e-g), the proposed controller (green) is
compared to the CLF-CBF-QP controller (blue). The CLF-
CBF-QP reaches the input-constraint at t = 5.9 seconds.
The input limits force the system to leave the safe set. The
ICCBF-QP remains feasible and safe for the entire duration,
by applying brakes early, at t = 2.9 seconds, instead of
t = 5.0 seconds. Thus, by explicitly accounting for input
constraints ICCBF-QP controller keeps the input-constrained
system safe, where the CLF-CBF-QP doesn’t.

B. Autonomous Rendezvous

In this section, the ICCBF method is applied to an
autonomous rendezvous operation (adapted from [14]) be-
tween a chaser spacecraft modelled as a point mass, and
a target body, e.g. the International Space Station (ISS)
(Figure 3). The target is modelled as a point on a disk
of radius ρ = 2.4 m rotating with a constant angular
velocity ω = 0.6◦/sec relative to the Local-Vertical Local-
Horizontal (LVLH) frame. The objective is to determine the
appropriate propulsive forces to bring the chaser spacecraft
from a range of 100 m to 3 m. The safety constraint is to
maintain a line-of-sight (LOS) constraint: the spacecraft’s
position must remain within a γ = 10◦ cone of the docking
axis. The system state x ∈ R5 is the relative position (px, py)
and velocity (vx, vy) and angle of the docking port ψ. Instead
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of using the (linearized) Clohessy-Wiltshire equations (as in
[14]), we use the exact equations of relative motion1:

d

dt


px
py
vx
vy
ψ

 =


vx
vy

n2px + 2nvy +
µ
r2 −

µ(r+px)
r3c

n2py − 2nvx − µpy
r3c

ω

+
1

mc


0
0
ux
uy
0


(23)

where rc =
√
x2 + y2 is the relative distance to the

chaser, r = 6771 km is the radius of orbit of the ISS,
µ = 398, 600 km3/s2 is the gravitational parameter of Earth,
n =

√
µ/r3 is the mean motion of the target satellite around

the Earth, ω = 0.6◦/s is the angular velocity of the target
relative to the LVLH frame, and mc = 1000 kg is the mass of
the chaser vehicle, assumed constant during the rendezvous.
The control inputs (ux, uy) are the propulsive forces. Sup-
pose the forces are 1-norm bounded, |ux|+|uy|≤ 0.25 kN.
The LOS constraint is h(x) ≥ 0, where

h(x) = cos θ − cos γ

=
~rc−p · ê
||~rc−p||

− cos(γ),

and ~rc−p = [(px − ρ cosψ), (py − ρ sinψ)]T is the posi-
tion vector of the chaser relative to the docking port, and
ê = [cosψ, sinψ]T is the docking axis vector. We use a
CLF to guide the chase to the the docking port:

V (x) =

(
vx +

px − ρ cosψ
10

)2

+

(
vy +

py − ρ sinψ
10

)2

.

To construct the ICCBF, again N = 2 was chosen. The
following class-K functions were used:

α0(h) = 0.25h, α1(h) = 0.85h, α2(h) = (0.05 + k)h

where k > 0 is a parameter we allow the Quadratic Program
to minimize, as in [4], and verified approximately. Thus, the
controller u∗ is the solution to u in the following quadratic
optimization problem

argmin
u∈R2;δ,k∈R+

1
2 (u

2
x + u2y) + 10δ + 50k

subject to LfV (x) + LgV (x)u ≤ −0.1V (x) + δ
Lfb2(x) + Lgb2(x)u ≥ −(0.05 + k)b2(x)
|ux|+|uy|≤ 0.25

Figure 3(c-g) show simulation results of the rendezvous
operation. The chaser is initialized at (100, -10) meters from
the target spacecraft, and follows the trajectories drawn in
(c-e), demonstrating a successful transfer. The 1-norm of the
computed thrust force is indicated in (f), and (g) shows that
the LOS constraint is satisfied at all times during the transfer.
3D animations, videos and source code for both case studies
are available at [15].

1In this work, only gravitational forces due to the Earth and propulsive
forces are modelled, but other non-linear effects like solar radiation pressure
or air resistance can also be included.

V. CONCLUSION

In this paper, we have presented a framework that allows
input constraints to be explicitly included in the construction
of control barrier functions and to guarantee that safety is
maintained with an input-constrained controller. The con-
struction identifies an inner safe set and a feedback controller
to render the subset safe. We demonstrated the method on
an adaptive cruise control problem and a spacecraft ren-
dezvous problem. An optimization based method was used
to verify the conditions of the ICCBF. Directions for future
work include investigating numerically efficient methods
to automate the search of ICCBFs, and to compare the
complexity with other reachability methods, in particular for
systems with high-dimensional states. Finally, the robustness
of this controller to noise and model mismatch could also be
investigated.
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