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Abstract— This paper presents the gatekeeper algorithm,

a real-time and computationally-lightweight method to ensure

that nonlinear systems can operate safely in dynamic environ-

ments despite limited perception. gatekeeper integrates with

existing path planners and feedback controllers by introducing

an additional verification step that ensures that proposed

trajectories can be executed safely, despite nonlinear dynamics

subject to bounded disturbances, input constraints and partial

knowledge of the environment. Our key contribution is that (A)

we propose an algorithm to recursively construct committed

trajectories, and (B) we prove that tracking the committed

trajectory ensures the system is safe for all time into the future.

The method is demonstrated on a complicated firefighting

mission in a dynamic environment, and compares against the

state-of-the-art techniques for similar problems.

I. INTRODUCTION

Designing autonomous systems that can accomplish mis-
sion specifications with strict guarantees of safety is still
a bottleneck to deploying such systems in the real world.
Safety is often posed as requiring the system’s trajectories
to lie within a predefined set of allowable states, called the
safe set. If the safe set is not known a priori, but is instead
built based on output (sensor) measurements on-the-fly, then
ensuring safety is even more challenging. We consider the
problem where a robot with limited sensing capabilities
(hence limited information about the environment) has to
move while remaining safe using only available sensory
information and limited assumptions on the evolution of the
environment.

Navigating within a non-convex safe set is often tackled by
path planning techniques [1]–[4]. Since simplified (often lin-
ear) dynamics are used to generate trajectories that lie within
the safe set, these may not be trackable by a nonlinear sys-
tem. Furthermore, since trajectories are planned over finite
horizons, in dynamic environments these methods can fail to
find solutions, leading to safety violations. Recently, Control
Barrier Functions (CBFs) [5] have gained interest since they
offer a computationally-efficient method to maintain forward
invariance of a safe set. However, a suitable CBF needs to be
found, either analytically or using computationally expensive
offline methods [5], [6]. Constructive methods are applicable
to certain classes of dynamics and safe sets, but do not handle
time-varying or multiple safety conditions well [7]–[10].
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Approaches that couple the path planning and control
problems comprise Model Predictive Control (MPC) tech-
niques [11], [12], where dynamically feasible trajectories in
the nonconvex safe set are designed. The nonconvexity of the
problem implies that guaranteeing convergence, stability and
recursive feasibility is challenging. In [13], such guarantees
are obtained by exploiting the differential flatness of the
system, although the resulting mixed-integer problem makes
the method expensive in cluttered/complicated environments.

In this paper, we propose a technique to bridge path
planners (that can solve the nonconvex trajectory generation
problem) and low-level control techniques (that have robust
stability guarantees) in a way that ensures safety, without
modifying either. The idea is that given a nominal trajectory
generated by the path planner (potentially unsafe and/or not
dynamically feasible), using a backup controller we construct
a committed trajectory that is safe, feasible, and defined for
all future time. The low-level controller always tracks the
committed trajectory, and therefore will always remain safe.
This paper’s key contribution is the algorithm to construct
such committed trajectories, and a proof that the proposed
approach ensures safety.

The method takes inspiration from [14] and [15], both of
which also employ the idea of a backup planner/controller.
In [14], a backup trajectory is constructed using a linear
model to ensure the trajectory lies within the known safe set
at any given time. However, ensuring that a trajectory (that
may not be feasible for the nonlinear system dynamics) can
be tracked is challenging. In [15], safety is guaranteed by
blending the nominal control input with a backup control
input. The mixing fraction is determined by numerically for-
ward propagating the backup controller. However, since the
nominal and backup control inputs are mixed, the nominal
trajectory is never followed exactly, even when it is safe to do
so. In this paper, by combining elements from both methods
in a novel manner, we address the respective limitations
of each. Furthermore, we explicitly account for robustness
against disturbances since it turns out to be non-trivial.

Notation: Let N = {0, 1, 2, ...}, and R,R>0,R�0 denote
the set of reals, positive reals, and non-negative reals. Low-
ercase t is used for specific time points, while uppercase T
is for intervals. k·k refers to the vector 2-norm. Norm balls
are denoted B(x0, r) = {x : kx� x0k  r}. A  B is the
Pontryagin set difference. A function ↵ : R�0 ! R�0 is
class K if it is continuous, strictly increasing and ↵(0) = 0.
� : R�0 ⇥ R�0 ! R�0 is a class KL function if it is
continuous, for each t � 0, �(·, t) is class K, and for each
r > 0, �(r, ·) is strictly decreasing and limt!1 �(r, t) = 0.
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II. MOTIVATING EXAMPLE

We present an example to illustrate the key concepts
in this paper, and challenges when dealing with dynamic
environments and limited perception. A common wildfire
fire-fighting mission is the “firewatch” mission, where a
helicopter is deployed to trace the fire-front, the outer
perimeter of the wildfire. The recorded GPS trace is used
to create a map of the wildfire, used to efficiently deploy
resources. Today, the firewatch mission is often carried out by
human pilots, but in this example, we design an autonomous
controller for a UAV to trace the fire-front without entering
or being surrounded by the fire. Fig. 1 depicts the notation.

The fire is constantly evolving, and expanding outwards.
Thus the safe set, the set of states located outside the fire,
is a time-varying set denoted S(t). Since the rate of spread
of fire is different at each location, (it depends on various
environmental factors like slope, vegetation and wind [16],
[17]), the evolution of the safe set S(t) is unknown.

That said, it is often possible to bound the evolution of
S(t). In this example, we assume the maximum fire spread
rate is known. To operate in this dynamic environment, the
UAV makes measurements, for example thermal images that
detect the fire-front. However, due to a limited field-of-view,
only a part of the safe set can be measured.

The challenge, therefore, is to design a controller for the
nonlinear system that uses the on-the-fly measurements to
meet mission objectives, while ensuring the system state x(t)
remains within the safe set at all times, i.e.,

x(t) 2 S(t), 8t � t0. (1)

Since S is in general unknown, verifying (1) directly is
not possible. We ask a related question: given the information
available at some time tk, does a candidate trajectory pcan

k

satisfy

pcan
k

(t) 2 Bk(t), 8t � tk, (2)

where Bk(t) is the estimated safe set at a time t � tk,
constructed using the sensory information available up to
time tk only. If we assume the perception system is not
incorrect, i.e., Bk(t) ⇢ S(t) 8t � tk, then any candidate
trajectory that satisfies (2) will also satisfy pcan

k
(t) 2 S(t).

However, since the check in (2) needs to be performed over
an infinite horizon t � tk, it is not numerically feasible. A
key contribution of this paper is to show how we can perform
this check by verifying only a finite horizon into the future.

In this paper, we propose the following: when new infor-
mation from the perception system arrives, we construct a
candidate trajectory and check whether (2) holds for the
candidate. If it does, the candidate trajectory becomes a
committed trajectory. The low-level controller always tracks
the last committed trajectory, ensuring safety.

Referring back to the firewatch mission, if the UAV is able
to fly faster than the maximum spread rate of the fire, a safe
course of action could be to simply fly perpendicular to the
firefront, i.e., radially from the fire at a higher speed than the
maximum fire spread rate. This maneuver is an example of a

backup controller, since it encodes the idea that if the system
state reaches a backup set Ck(t) at some time tkB � tk,
then the backup controller ⇡B

k
ensures that x(t) 2 Ck(t) for

all t � tkB . In the firewatch mission, ⇡B

k
is controller that

makes the UAV fly perpendicular to the firefront, and Ck(t)
is the set of states that are “sufficiently far from fire, with a
sufficiently high speed perpendicular to the fire.”1 Since the
fire is constantly expanding, the Ck(t) set is also changing in
time: the set of safe states needs to continue moving outwards
radially. Furthermore, at each k, the backup controller and
set can be a different, so we index these by k as well.

Using the notion of backup controllers, (2) reduces to:

pcan
k

(t) 2 S(t) 8t � tk (3)

()
(
pcan
k

(t) 2 S(t) if t 2 [tk, tkB)

pcan
k

(t) 2 S(t) if t 2 [tkB ,1)
(4)

(=

(
pcan
k

(t) 2 Bk(t) if t 2 [tk, tkB)

pcan
k

(tkB) 2 Ck(tkB)
(5)

for any tkB � tk, provided (I) Bk(t) ⇢ S(t), (II) Ck(t) ⇢
S(t) 8t � tkB , and (III) for t � tkB the control input to the
candidate trajectory is ⇡B

k
. These conditions can be verified

easily: (I) is the correctness of the perception system, (II) is
the defining property of a backup controller, and (III) will
be true based on how we construct the candidate trajectory.

Notice that in (5), we only need to verify the candidate
trajectory over a finite interval [tk, tkB ], but this is sufficient
to proving that the candidate is safe for all t � tk.

In the following sections, we formalize the gatekeeper
as a method to construct safe trajectories that balance be-
tween satisfying mission objectives and ensuring safety.

III. PROBLEM FORMULATION
Consider a nominal and a perturbed nonlinear system:

ẋ = f(x, u), (6)
ẋ = f(x, u) + d(t), (7)

respectively, where x 2 X ⇢ Rn is the state, u 2 U ⇢ Rm is
the control input, and f : X ⇥U ! Rn defines the (nominal)
system dynamics. The additive disturbances d : [t0,1) !
Rn are bounded, sup

t�t0
kd(t)k = d̄ <1.

Given a control policy ⇡ : [t0,1) ⇥ X ! U , an initial
condition x(t0) = x0 2 X , and a bounded disturbance signal
d(t)  d̄, t � t0, the initial-value problem describing the
closed-loop system dynamics are:

ẋ = f(x, ⇡(t, x)), x(t0) = x0, (8)
ẋ = f(x, ⇡(t, x)) + d(t), x(t0) = x0. (9)

We assume that for each bounded disturbance signal d(t), the
solution x(t) exists and is unique for all time t 2 [t0,1).

Our method is based on concepts in forward invariance.

Definition 1. For system (6), a controller ⇡ : [t0,1)⇥X !
U renders a set C(t) ⇢ X controlled-invariant on t0 if, for

1A worked example with exact expressions for S(t),Bk(t), Ck(t) is in
the appendix of an extended version of this paper, uploaded here: [18].
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Goal

Trajectories:

previously committed trajectory, de!ned on 

desired trajectory, constructed by nominal planner, de!ned on

candidate trajectory 2: is valid, and therefore becomes committed 

over and then executes backup controller)

committed trajectory, de!ned on 

Sets:

obstacles

unknown

known safe

estimated safe set using measurements upto time 

true safe set

controlled-invariant set using backup controller 

controlled-invariant set using backup controller 

(control input tracks 

candidate trajectory 1: is invalid, therefore not committed  

ate trajectory 2: is valid, and therefore becomes committed 

unsafe set

Fig. 1. Notation used in this paper. The nominal planner can plan
trajectories into unknown spaces, but gatekeeper ensures the committed
trajectory lies within the estimated safe sets, for all future time.

the closed-loop system (8) and any ⌧ � t0,

x(⌧) 2 C(⌧) =) x(t) 2 C(t), 8t � ⌧. (10)

Definition 2. For system (7), a controller ⇡ : [t0,1) ⇥
X ! U renders a set C(t) ⇢ X robustly controlled-invariant
on t0 if, for the closed-loop system (8) and any bounded
disturbance d(t) with sup

t�t0
kd(t)k  d̄, for any ⌧ � t0,

x(⌧) 2 C(⌧) =) x(t) 2 C(t), 8t � ⌧. (11)

The objective of this paper is to design a controller that
ensures that system trajectories remain within S(t). We
assume the following are available:

• a perception system that can estimate the safe set
• a nominal planner that uses simplified dynamics to

generate desired trajectories to satisfy mission require-
ments (for example reaching a goal state, or exploring
a region)

• a trajectory tracking controller
• a backup controller that can stabilize the system to a

control invariant set.
Each is described in further detail below.

1) Perception System: Let S(t) ⇢ X be the time-varying
set of safe states, which in general is unknown. We assume
that the perception system can construct estimates of the safe
set that are updated as new information is acquired. The
information is available at discrete times tk, k 2 N. Let Bk(t)
denote the estimated safe set at time t � tk constructed using
sensory information upto time tk. We assume that:

Assumption 1. The estimated safe set Bk(t) satisfies

Bk(t) ⇢ S(t) 8t � tk, 8k 2 N, (12)
Bk(tk+1) ⇢ Bk+1(tk+1) 8k 2 N. (13)

This is essentially a correctness assumption: if the k-th
measurement classifies a state x as safe at some t � tk+1,
we assume the next measurement will not reclassify x (for
the same t) as unsafe. This assumption (while stated more
generally) is common in the literature on path planning in dy-
namic/unknown environments [19], [20]. Depending on the
application, various methods can be used to computationally
represent such sets, including SDFs [21] or SFCs [22]. Note,
Assumption 1 does not require that if x 2 Bk(t) at some t, k,
then x 2 Bk(⌧) for all ⌧ > t.

2) Nominal Planner: We assume that a nominal planner
enforces the mission requirements by specifying the desired
state of the robot for a short horizon TH into the future.

Definition 3. A trajectory p with horizon TH is a piecewise
continuous function p : T ! X defined on T = [tk, tk +
TH ] ⇢ R. A trajectory p is dynamically feasible for the
system (6) if there exists a control policy u : T ! U s. t.

p(t) = p(tk) +

Z
t

tk

f(p(⌧), u(⌧))d⌧, 8t 2 T . (14)

Denote the nominal trajectory available at the k-th iteration
by pnom

k
, defined on [tk, tk + TH ]. We do not require pnom

k

to be dynamically feasible.
3) Tracking Controller: We assume a state feedback con-

troller ⇡T : X ⇥ X ! U that computes a control input
u = ⇡T (x, p(t)) to track a given trajectory p(t); we refer to
this policy as the tracking controller [23]–[25]. We assume
that the tracking controller is disturbance-to-state stable:

Definition 4. For any trajectory p(t) defined on T =
[tk, tk + TH ] that is dynamically feasible for the nominal
system (6), the closed-loop dynamics of the perturbed sys-
tem (7) under the tracking controller ⇡T given by:

ẋ = f(x, ⇡T (x, p(t)) + d(t) (15)

is disturbance-to-state stable, i.e., for any disturbance d(t),

kx(tk)� p(tk)k  � =)
kx(t)� p(t)k  �(�, t� tk) + �(d̄), 8t 2 T , (16)

where � : R�0 ⇥ T ! R�0 is class KL , � : R�0 ! R�0

is class K , and d̄ = sup
t�t0

kd(t)k.

4) Backup Controller: In the case when a safe set S
can not be rendered controlled invariant for given system
dynamics, the objective can be reduced to finding a set
C ⇢ S , and a controller ⇡ : C ! U that renders the set C
controlled invariant. For example, by linearizing (6) around
a stabilizable equilibrium point xe, an LQR controller can
render a (sufficiently) small set of states around xe forward
invariant [26, Thm. 4.13, 4.18]. This observation leads to the
notion of backup safety [15], [27].

Definition 5. A controller ⇡B

k
: T ⇥ X ! U is a backup

controller to a set Ck(t) ⇢ X defined for t 2 T = [tk,1)
if, for the closed-loop system

ẋ = f(x, ⇡B

k
(t, x)), (17)
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(A) there exists a neighborhood Nk(t) ⇢ X of Ck(t), s.t.
Ck(t) is reachable in fixed time TB:

x(⌧) 2 Nk(⌧) =) x(⌧ + TB) 2 C(⌧ + TB), (18)

and (B) ⇡B

k
renders Ck(t) controlled-invariant:

x(⌧) 2 C(⌧) =) x(t) 2 C(t) 8t � ⌧. (19)

We make the following assumption:

Assumption 2. At the k-th iteration, a set Ck(t) and a backup
controller ⇡B : [tk,1)⇥X ! U to Ck(t) can be found s.t.

Ck(t) ⇢ S(t), 8t � tk. (20)

Remark 1. Note that while we assume Ck(t) ⇢ S(t), we
do not assume the trajectory to reach Ck(t) is necessarily
safe, or that the set Ck(t) is reachable from the current state
x(tk). This is in contrast to backward reachability based
methods [9], [10], [28], [29].

In summary, the problem statement is

Problem 1. Consider a dynamical system (7) with a percep-
tion system satisfying assumption 1, a nominal planner that
generates desired trajectories, a disturbance-to-state stable
tracking controller, and a backup controller satisfying as-
sumption 2. Design an algorithm to track desired trajectories
while ensuring safety, i.e., x(t) 2 S(t) for all t � t0.

IV. PROPOSED SOLUTION
gatekeeper is an additional module that lies between

the traditional planning and control modules. It takes tra-
jectories generated by the nominal planner, and instead of
passing them directly to the low-level tracking controller, it
computes a safe committed trajectory that is passed to the
low-level tracking controller instead. In this section, we will
demonstrate how to construct these committed trajectories.
To aid the reader, the analysis is first presented for the
nominal case, and later extended to the perturbed case. The
various trajectories and times are depicted in Fig. 1.

A. Nominal Case
Suppose at the k-th iteration, k 2 N \ {0}, the previously

committed trajectory is pcom
k�1. gatekeeper constructs a

candidate trajectory pcan,TS

k
by forward propagating a con-

troller that tracks pnom
k

over an interval [tk, tk + TS),
and executes the backup controller for t � tk + TS . TS

is a switching time that gatekeeper will optimize, as
described later. Formally,

Definition 6. Suppose at t = tk,
• the state is x(tk) = xk

• the nominal trajectory is pnom
k

defined on [tk, tk +TH ]
• ⇡B

k
is a backup controller to the set Ck(t)

Given a TS 2 [0, TH ], the candidate trajectory pcan,TS

k
is the

solution to the initial value problem

ṗ = f(p, u(t)), p(tk) = xk, (21)

u(t) =

(
⇡T (p(t), pnom

k
(t)) t 2 [tk, tk + TS)

⇡B

k
(t, p(t)) t � tk + TS .

(22)

The candidate trajectory pcan,TS

k
is defined on [tk,1).

We say a candidate trajectory is valid if the following hold:

Definition 7. A candidate trajectory pcan,Ts

k
defined by (21)

is valid if the trajectory is safe wrt the estimated safe set:

pcan,TS

k
(t) 2 Bk(t), 8t 2 [tk, tk,SB ], (23)

and the trajectory reaches Ck(t) at the end of the horizon:

pcan,TS

k
(tk,SB) 2 Ck(tk,SB), (24)

where tk,SB = tk + TS + TB .

Notice that checking whether a candidate is valid only
requires the solution pcan,TS

k
over the finite interval [tk, tk+

TS + TB ]. This means that the candidate can be constructed
by numerical forward integration over a finite horizon.

Next, we define how to construct a committed trajectory.

Definition 8. At the k-th iteration, define

Ik =
n
TS 2 [0, TH ] : pcan,TS

k
is valid

o
, (25)

where pcan,TS

k
is as defined in (21), and Def. 7 is used to

check validity.
If Ik 6= ;, let T ⇤

S
= max Ik. The committed trajectory is

pcom
k

(t) = p
can,T

⇤
S

k
(t), t 2 [tk,1). (26)

If Ik = ;, the committed trajectory is

pcom
k

(t) = pcom
k�1(t), t 2 [tk,1). (27)

Def. 8 defines how the k-th committed trajectory is con-
structed using the nominal trajectory pnom

k
and the backup

controller ⇡B

k
.

Finally, we prove the proposed strategy guarantees safety.

Theorem 1. Suppose pcan,TS
0 is a dynamically feasible

candidate on [t0,1) that is valid by Def. 7 for some TS � 0.
If, for every k 2 N, pcom

k
is determined using Def. 8, then

pcom
k

(t) 2 S(t), 8t 2 [tk,1). (28)

Furthermore, if x(t0) = pcom0 (t0), and control input to
the nominal system (6) is u(t) = ⇡T

k
(x(t), pcom

k
(t), for t 2

[tk, tk+1), then the closed-loop dynamics (8) satisfy x(t) 2
S(t) for all t � t0.

Proof. The first claim, i.e., pcom
k

(t) 2 S(t) for t � tk is
proved by induction. Base Case: k = 0. Since pcan0 is a
valid trajectory, it is committed, i.e., pcom0 = pcan,TS

0 . Then,

pcom0 (t) 2
(
B0(t) for t 2 [t0, t0,SB)

C0(t) for t = t0,SB

=) pcom0 (t) 2
(
S(t) for t 2 [t0, t0,SB)

S(t) for t � t0,SB

() pcom0 (t) 2 S(t) for t � t0

where t0,SB = t0 + TS + TB .
Induction Step: Suppose the claim is true for some k 2 N.

We will show the claim is also true for k+1. There are two
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possible definitions for pcom
k

:
Case 1: When Ik+1 6= ;, p

can,T
⇤
S

k+1 is a valid candidate, i.e.,

pcom
k+1(t) = p

can,T
⇤
S

k+1 (t) 8t � t0

2
(
Bk+1(t) for t 2 [tk+1, tk+1,SB)

Ck+1(t) for t � tk+1,SB

2 S(t) for t � tk+1

Case 2: If Ik+1 = ;, the committed is unchanged,

pcom
k+1(t) = pcom

k
(t) 2 S(t), 8t � tk+1.

This completes the first claim. Next, we prove that x(t) 2
S(t) for all t � t0. We do so by proving that 8k 2 N, x(t) =
pcom
k

(t) for all t 2 [tk, tk+1). Again, we use induction.
Base Case: Since we are considering the nominal system

dynamics (6), if x(t0) = pcom0 (t0), and the tracking con-
troller is disturbance to state stable (16),

kx(t)� pcom0 (t)k  �(0, t� t0) + �(0) = 0

) x(t) = pcom0 (t) 8t 2 [t0, t1)

Induction Step: Suppose for some k 2 N, x(t) = pcom
k

(t)
for t 2 [tk, tk+1). There are two cases for pcom

k+1: Case 1:
a new candidate is committed, ) pcan,TS

k+1 (tk+1) = x(tk+1).
Since the tracking controller is disturbance-to-state stable,
this implies x(t) = pcom

k+1(t) for t 2 [tk+1, tk+2). Case 2: A
new candidate is not committed, ) pcom

k+1(t) = pcom
k

(t) for
t 2 [tk+1, tk+2). Since x(tk+1) = pcom

k
(tk+1), the tracking

controller ensures x(t) = pcom
k+1(t) for t 2 [tk+1, tk+2).

Therefore, x(t) = pcom
k

(t) 2 S(t) 8t 2 [tk, tk+1), for
each k 2 N. Thus, x(t) 2 S(t) for all t � t0.

Remark 2. Notice that this construction method allows safe
nominal trajectories to be followed closely: suppose at tk a
candidate trajectory pcan,TS

k
is committed, i.e., tracking the

nominal over [tk, tk +TS) is safe. If the next iteration starts
within this interval (tk+1 2 [tk, tk + TS)), and a new valid
candidate pcan,TS

k+1 is found, the system will track it over the
larger interval [tk, tk+1 + TS) and the backup controller is
not used. As such, when gatekeeper is run frequently (i.e.
tk+1� tk is small), the committed trajectory is closer to the
nominal trajectory. In practice, often, planners compute paths
based on a global map, updated less frequently than the local
map. Running gatekeeper on every local map update
allows the system to be more reactive to new information.

B. Perturbed Case

We now address the case where the disturbances are non-
zero. The algorithm is identical to that presented above,
except that the validation step will be redefined. First, we
highlight the problem that disturbances introduce. Recall
Def. 4, which defines the maximum tracking error.

A specific scenario is visualized in Fig. 2. If instead
of (23), we checked that the tube containing the system
trajectories lies within the safe set (green tube in Fig. 2a),
then indeed, the system can remain safe. However, at the
next iteration, for any new candidate, the new tube (red tube

Obstacle Obstacle

a) b)Incorrect Approach Proposed Approach

Candidate tube
intersects with
unsafe set 

New candidate
tube is safe

Fig. 2. Diagram depicting the challenge due to disturbances. (a) Green
line shows the committed trajectory at iteration k, and the shaded region
is the tube that contains the system trajectory. If the validation step only
checks that the green tube lies within the safe set, a new candidate trajectory
(red) cannot be committed, since the candidate tube (red shaded region)
intersects with the unsafe set. (b) shows the proposed approach, where a
tube of larger radius R is used to validate the trajectory. This ensures that
at the next iteration, there is sufficient margin for a new trajectory to be
committed.

in Fig. 2a) will intersect with the unsafe set. Therefore, no
new candidate trajectory can be committed, i.e., an undesired
deadlock is reached: x(t) 2 Ck(t) for all t � tk,SB .

To avoid this behavior, we must use a larger radius when
performing the check:

Definition 9. A candidate trajectory pcan,Ts

k
defined by (21)

is robustly valid with robustness level r � 0, if
• it is robustly safe over a finite interval:

pcan,TS

k
(t) 2 Bk(t) B(0, R) 8t 2 [tk, tk,SB ], (29)

• at the end of the interval, it reaches the interior of Ck(t):

pcan,TS

k
(tk,SB) 2 Ck(tk,SB) B(0,m), (30)

• and the set Ck(t) is R away from the safe set boundary:

Ck(t) ⇢ S(t) B(0, R) 8t � tk, (31)

where m = �(r, TS + TB) + �(d̄) and R = �(r, 0) + �(d̄).

Notice that �(d̄)  m  R for each r, but in the limit as
r ! 0, �(d̄) = m = R.

Theorem 2. Suppose pcan,TS
0 is a dynamically feasible can-

didate trajectory on [t0,1) that is robustly valid by Def. 9
for some r, TS > 0. Suppose

���x(t0)� pcan,TS
0 (t0)

���  r.
If, for every k 2 N, pcom

k
is determined using Def. 8

(except that validity is checked using Def. 9), and the control
input to the perturbed system (7) is

u(t) = ⇡T

k
(x(t), pcom

k
(t)) 8t 2 [tk, tk+1] (32)

then the closed-loop (9) satisfies x(t) 2 S(t), 8t � t0.

Proof. This proof is almost identical to that of Thm. 1. We
highlight the main differences. We need to prove two things:
(A) for every iteration k,

���x(tk)� pcan,TS

k

��� < r and (B) if
(A) is true, then tracking the k-th robustly valid candidate
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trajectory for t � tk ensures x(t) 2 S(t).
Part (A): The base case, k = 0, is assumed in the

theorem statement. For k � 1, notice that when pcan,TS

k

is constructed, according to (21), the candidate is a forward
propagation from the initial condition pcan,TS

k
(tk) = xk =

x(tx). Therefore,
���x(tk)� pcan,TS

k
(tk)

��� = 0  r.

Part (B): If pcan,TS

k
is robustly valid,

pcan,TS

k
(t) 2

(
Bk(t) B(0, R) t 2 [tk, tk,SB)

Ck(t) B(0,m) t 2 [t0,SB ,1)

Therefore, if x(t) were to track pcan,TS

k
for all t � tk,

x(t) 2
(
Bk(t) t 2 [tk, tk,SB)

Ck(t) t 2 [tk,SB ,1)
=) x(t) 2 S(t) 8t � tk

since by Assumption 4,
���x(tk)� pcan,TS

k
(tk)

���  r implies
���x(t)� pcan,TS

k
(t)

���  �(r, t� tk) + �(d̄)  R, 8t � tk.

To complete the proof, notice that since the commit-
ted trajectory over the interval [tk, tk+1) corresponds to a
robustly valid candidate trajectory, tracking pcom

k
implies

x(t) 2 B(pcom
k

(t), R) ⇢ S(t), for all t 2 [tk, tk+1). Since
this is true for all k 2 N, x(t) 2 S(t) for all t � t0.

Remark 3. The theorem can be interpreted as guide-
lines/constraints on the nominal planner. For instance, re-
quiring trajectories to lie in B(tk)  B(0, R) corresponds
to the common practice of inflating the unsafe sets by a
radius R. However, what should the inflation radius be?
The theorem shows that any R � �(d̄) is sufficient. Fur-
ther increasing R (by increasing r) makes solutions more
conservative, but robust to mismatch in initial conditions
kx(tk)� pcom

k
(tk)k  r. This can be used to account for

errors due to state estimation or computation time.

Remark 4. The construction of committed trajectories is
summarized in pseudo-code in Alg. 1. Determining max I
is not computationally expensive, since it is an optimization
over a scalar variable in a bounded interval. We used a simple
grid search with N points. Therefore, upto N initial value
problems need to be solved. Using modern diffeq libraries,
e.g. [30], this can be done very efficiently. In our simulations,
with N = 10, the median computation time was only 3.4 ms.

V. EXTENDED CASE STUDY

Code and Animations: [18].
We simulate an autonomous helicopter performing the

firewatch mission, around a fire with an initial perimeter of
16 km. The helicopter begins 0.45 km from the fire front,
and is tasked to fly along the perimeter, without entering
the fire, while maintaining a target airspeed of 15 m/s. The
helicopter is modelled as:

ẋ1 = x3 cosx4 ẋ2 = x3 sinx4

ẋ3 = u1 ẋ4 = (g/x3) tanu2

Algorithm 1: gatekeeper

1 Parameters: N > 0 2 N
// Do a grid search backwards over

the interval [0, TH ]:
2 for i in range(0, N ): do

3 Using Bk(t), identify Ck(t) satisfying assum. 2.
4 TS = (1� i/N)TH

5 Solve the initial value problem (21) to determine
pcan,TS

k
(t) over the interval [tk, tk + TS + TB ]

6 if pcan,TS

k
is robustly valid by Def. 9 then

7 pcom
k

= pcan,TS

k

8 return

// no candidate is valid, I = ;
9 pcom

k
= pcom

k�1
10 return

where x1, x2 are the cartesian position coordinates of the
helicopter wrt an inertial frame, x3 is the speed of the vehicle
along its heading, x4 is the heading, and g is the acceleration
due to gravity. The control inputs are u1, the acceleration
along the heading, and u2, the roll angle. The inputs are
bounded, with |u1|< 0.5g and |u2|< ⇡/4 rad. This system
models a UAV that can control its forward airspeed and
makes coordinated turns. Notice the model has a singularity
at x3 = 0, and the system is not control affine.

The fire is modeled using level-set methods [31]. In
particular, the fire is described using the implicit function
� : R⇥R2 ! R, where �(p, t) is the signed distance to the
firefront from location p at time t. Hence, the safe set is

S(t) = {x : �(t, [x1, x2]
T ) � 0

where [x1, x2] is the position of the UAV. The evolution
of the fire is based on the Rothermel 1972 model [16].
Each point p on the fire-front travels normal to the front
at a speed �(p), satisfying: @�

@t
(t, p) + �(p) kr�(t, p)k = 0,

where � : R2 ! R is the Rate of Spread (RoS). The RoS
depends on various environmental factors including terrain
topology, vegetation type, and wind speeds [16], [17] but can
be bounded [32]. The simulated environment was assigned
an RoS function that the controllers did not have access to.
The only information the controllers were allowed to use was
the thermal image (to detect the fire within a ±1 km range)
and assumption that the maximum rate of spread is 8 km/h.

We compare our approach against the nominal planner and
two state of the art methods for similar problems, Fig. V.
In particular, we compare (A) a nominal planner (black),
(B) FASTER [14] (purple), (C) Backup Filters [15] (blue)
and (D) gatekeeper (green). Since these methods were
not originally developed for dynamic environments with
limited perception, both methods (B, C) were modified to
be applicable to this scenario. See [18] for details.

The simulation environment and each of the methods were
implemented in julia, to allow for direct comparison.
Tsit5() [30] with default tolerances was used to simulate
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Fig. 3. Simulation results from Firewatch mission. (a) Snapshots of the fire and trajectories executed by each of three controller. The fire is spreading
outwards, and the helicopters are following the perimeter. The black line traces the nominal controller, the blue line is based on the backup filter adapted
from [15] and the green line shows the proposed controller. (b, c) show specific durations in greater detail. At t = 0, the gatekeeper controller behaves
identically to the nominal controller, and makes small modifications when necessary to ensure safety. The backup filter is conservative, driving the helicopter
away from the fire and slowing it down. (d) Plot of minimum distance to fire-front across time for each of the controllers. (e) The nominal controller
becomes unsafe 3 times, while FASTER, the backup controller, and the gatekeeper controllers maintain safety. Animations are available at [18].

Distance to Fire [km] Velocity [m/s] Comp. time [ms]
Minimum Mean Std. Mean Std. Median IQR

Target � 0 0.100 - 15.0 - - -

Nominal Planner -0.032 0.098 0.032 15.14 0.73 27.32 4.37 Unsafe
FASTER [14] 0.040 0.101 0.030 12.60 2.08 78.50 20.64 Safe, but gets trapped in pocket
Backup Filters [15] 0.081 0.240 0.054 10.11 3.52 0.87⇤ 0.05 Safe, but conservative and slow
Gatekeeper (proposed) 0.049 0.108 0.034 14.91 1.35 3.39 0.11 Safe

TABLE I. Comparison of gatekeeper (ours) with the nominal planner, FASTER [14], and backup filters [15]. The distance to the firefront, velocity
of the helicopter, and computation time per iteration are reported for each method. IQR = interquartile range. ⇤Since the backup filter is run at each control
iteration instead of every planning iteration, it runs 20 times as often as gatekeeper, i.e., is 5 times as computationally expensive as gatekeeper.

the different controllers. Each run simulates a flight time
of 50 minutes. The controllers were implemented as zero-
order hold, updated at 20 Hz. Measurements of the firefront
are available at 0.1 Hz, triggering the planners to update,
intentionally slow to highlight the challenges of slow per-
ception/planning systems. The measurements are a bitmask
image, defining the domain where �  0, at a grid resolution
of 10 meters. All experiments were performed on a 2019
Macbook Pro (Intel i9, 2.3 GHz, 16 GB).

In the nominal planner, a linear MPC problem is solved to
generate trajectories that fly along the local tangent 0.1 km
away from firefront at 15 m/s. The planner uses a simplified
dynamic model for the helicopter, a discrete-time double
integrator. This problem is a convex quadratic program (QP),
solved using gurobi. The median computation time is
27 ms, using N = 40 waypoints and a planning horizon of
120 seconds. The tracking controller is a nonlinear feedback

controller that directly tracks trajectories of the double inte-
grator, based on differential flatness [13], [25]. When the low
level directly tracks nominal trajectories, the system becomes
unsafe, going as far as 32 m into the fire.

In FASTER, the same double integrator model is assumed,
and a similar MPC problem is solved. We impose additional
safety constraints, that the committed trajectory must lie
within a safe flight corridor [22] based on the signed distance
field to the fire, corrected based on the maximum fire spread
rate. While this approach does keep the helicopter outside the
fire, it gets surrounded by the fire (Fig. Va). This is ultimately
due to the fact that FASTER only plans trajectories over a
finite planning horizon, and is therefore unable to guarantee
recursive feasibility in a dynamic environment. Due to the
additional constraints on the QP, FASTER is about 3 times
slower than the nominal planner.

In the Backup Filters approach, the backup trajectory
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is forward propagated on the nonlinear system over the
same 120 second horizon. The backup controller makes the
helicopter fly radially, i.e., is a simple feedback controller.
Backup trajectories can be computed extremely efficiently,
requiring less than 1 ms per iteration. While this approach
keeps the system safe, it does so at the cost of performance:
the mean distance to the fire is 0.24 km, more than twice
the target value, and the average speed is 10 m/s, 33% less
than the target. This is behaviour is because the desired flight
direction is perpendicular to the backup flight direction, and
therefore the trajectory is off-nominal.

In gatekeeper, the committed trajectories are con-
structed by maximizing the interval that the nominal trajec-
tory is tracked, before implementing the backup controller.
This allows the system to follow the nominal, and deviate
only when required to ensure safety: in Fig. Vc, we see that
gatekeeper chooses to not fly into the pocket, since it
cannot ensure a safe path out of the pocket will exist in the
future. gatekeeper is computationally lightweight, with a
median run time of 3.4 ms, more than 20 times faster than
FASTER. This is primarily because gatekeeper searches
over a scalar variable in a bounded interval, instead of
optimizing R4N+2N�2 variables as in the MPC problem.

VI. CONCLUSION
This paper proposes an algorithm (“gatekeeper”) to

safely control nonlinear robotic systems while information
about dynamically-evolving safe states is received online.
The algorithm constructs an infinite-horizon committed tra-
jectory from a nominal trajectory using backup controllers.
By extending a section of the nominal trajectory with the
backup controller, gatekeeper is able to follow nominal
trajectories closely, while guaranteeing a safe control input
is known at all times. We applied the algorithm to an aerial
firefighting mission, where we demonstrated gatekeeper
is less conservative than similar methods, while remaining
computationally lightweight. While we have demonstrated
the approach on a firefighting scenario, the method is ap-
plicable to a wide range of scenarios where only limited
safety information is known, for instance, overtaking or
merging scenarios for autonomous vehicles. Future directions
involve developing more general methods to identify backup
controllers, and understanding how the method can be ap-
plied to adversarial multi-agent settings. We also intend to
demonstrate the algorithm in other scenarios and in hardware
experiments.
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