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This paper presents wind tunnel measurements of blown flapped airfoil performance for

application to distributed electric propulsion STOL aircraft. The 2D airfoil wind tunnel

model features a simple slotted flap, and closely-spaced spanwise-distributed propellers driven

by electric motors. Measurements of lift, pitching moment and net streamwise force (drag

minus thrust) were made over a range of propeller RPM, angle of attack and flap angle. Lift

coefficients up to 9 were measured for practical blowing levels. High lift was also measured

with net streamwise force close to zero, which suggests that the use of blown lift during landing

is practical.

I. Nomenclature

b model span

c chord

∆cE jet excess power coefficient

∆cEB jet excess power coefficient of blowing

∆cEH jet excess power coefficient of hovering

∆cJ jet momentum-excess coefficient

cl lift coefficient

cm pitching moment coefficient

cx net streamwise force coefficient (drag–thrust)

h jet height

hd effective 2D actuator disk height

L ′ lift force per unit span

M ′ moment per unit span

R propeller radius

Re chord Reynolds number

rh propeller hub radius

u j center-line jet velocity

V∞ freestream velocity

VJ jet velocity

w vortex-sheet velocity

xp, zp x, z position of the propeller

α angle of attack

δm motor axis angle below horizontal

δf flap deflection angle

θ angle of streamline from the x-axis

γ vortex strength

κ streamline curvature

ρ density
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II. Introduction

Recently, interest in aerial urban transportation concepts (commonly known as Urban Air Mobility or UAM) and the

maturation of electric aircraft propulsion technology has led to many projects developing vehicles that can operate from

takeoff and landing areas (TOLAs) small enough to fit in dense urban settings. While almost all current projects are

for vertical takeoff and landing (VTOL) vehicles, several recent studies have suggested that short takeoff and landing

(STOL) aircraft may be able to operate off of similarly sized TOLAs through the use of externally blown flaps across

most of the aircraft wing [1, 2]. In this blown wing concept, the wake from electric motors distributed along the wing

leading edge interacts with the trailing edge flaps to provide much larger effective lift coefficients than are possible with

conventional high-lift systems.

Compared to VTOL vehicle concepts, STOL aircraft may have improved mission performance (in terms of range,

payload, or speed for a given vehicle size) and an easier pathway to certification [3]. To accurately assess the utility

of blown lift vehicles and the feasibility of extreme short-field performance, the effectiveness of the blown flaps and

the required power to generate high cl must be accurately understood. Several aircraft, such as the Boeing C-17 or

Lockheed F-104, have used some variation of blown surfaces to support high wing loading. However, due to the relative

novelty of the distributed electric configuration, the performance of a fully blown wing STOL aircraft is difficult to

predict with high confidence from the existing literature or available computational methods.

In this paper, a wind tunnel study of a blown wing section is presented, with the aim of experimentally characterizing

and understanding the aerodynamic performance of a blown lift system. A theoretical framework for understanding

and assessing wing blowing is presented in Section III. Section IV describes the experimental design, and results are

presented and discussed in Section V.

III. Blown Airfoil Theory

A blown airfoil has a jet of high-velocity air (relative to the freestream) directed over its surfaces. In this paper, we will

consider the case of blowing achieved by a propeller modeled as an actuator disc, blowing air mostly under the airfoil.

A. Physical Mechanism

The main underlying mechanism which contributes to increased lift of blown airfoils is the delayed bursting of the

main-element wake and the delayed separation of the flap boundary layer [4]. This effect is mainly achieved through the

injection of the blowing jet’s high total pressure through the flap gap. The end result of this effect is an the airfoil can

achieve higher lift through operation at both higher angles of attack, α, and higher flap deflections, δf .

An additional mechanism that contributes to increased lift is the downward deflection of the blowing jet, which leaves

the wing trailing edge at some downward angle θTE . The jet’s vertical momentum change is associated with an increased

pressure on the airfoil bottom surface, which results in an added upward lift force on the wing.

B. Vortex Sheet Model

In thin airfoil theory, following the formulation of Thwaites [5] and Maskell and Spence [6], an airfoil can be modeled by

a vortex sheet placed along the the x-axis, as in fig 1. The effect of blowing is captured by adding a jet wake vortex sheet

of strength γw(x), shown in Figure 2, which turns from the trailing edge direction, θ(x=c) = θTE to the final direction

θ → α. To model the forces on the airfoil, we first determine the strength of the wake vortex, and then determine the

circulation around the main airfoil, and combine these to determine lift and moments acting on the airfoil.
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Fig. 1 Actual blown airfoil flow, and vortex sheet model.
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Fig. 2 Jet sheet of finite thickness h, and vortex sheet model. The turning of the jet’s momentum-excess ∆J ′

implies an apparent pressure load on the vortex sheet.

The jet wake vortex strength is determined by the curvature of the jet stream, κ = dθ

ds
as in Figure 2. The potential

flow inside the jet will have a free-vortex distribution, u ∼ 1/r, and, therefore, the jet speed near the center-line is

approximately u(n) = ua(1 + κn) where ua ≡ u(0) is defined as the average velocity, and n is the normal direction.

Since the pressure is continuous across the jet boundaries, the velocity jumps are related by Bernoulli. The calculated

pressure jump across the jet must be equivalent, whether computed using the outer flow velocities or the jet flow

velocities. Therefore, the velocity jumps ∆V = V1 − V2, ∆u = u1 = u2 in Figure 2 are

1

2
ρ

(
V2

1
− V2

2

)
=

1

2
ρj

(
u2

1
− u2

2

)
(1)

ρVa∆V = ρjua∆u = ρju
2

aκh (2)

where Va = (V1 + V2) /2 is the average velocity. The vortex strength is related to the velocity jump, extrapolated to the

center-line

γw = V1

(
1 −

1

2
κh

)
− V2

(
1 +

1

2
κh

)
= ∆V − Vaκh =

ρju
2
a − ρV

2
a

ρVa

κh (3)
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Approximating Va ≃ V∞ and ua ≃ u j , the jet velocity, we define the jet momentum per unit span as

J ′
=

1

2
ρ∞V2

∞ccJ ≡

∫ h/2

−h/2

ρu2
dn ≃ ρju

2

j h (4)

Therefore the vortex strength is related to the jet momentum-excess J ′,

γw

V∞
=

∆J ′

ρ∞V2
∞

κ ≃
∆cJ

2
c

dθ

dx
(5)

This identifies the jet momentum-excess coefficient,

∆cJ ≡
∆J ′

1

2
ρ∞V2

∞c
=

J ′ − ρV2
∞h

1

2
ρ∞V2

∞c
= cJ − 2

h

c
(6)

as the key parameter which quantifies the effect of the jet on the overall blown-lift flowfield.

2. Flow solution

The streamline angle can be determined from the vortex strengths as:

θ(x) ≡ α +
w(x)

V∞
= α +

1

2π

∫ c

0

γ (x ′)

V∞

dx ′

x ′ − x
+

∆cJ

2

1

2π

∫ ∞

c

c
dθ

dx ′

dx ′

x ′ − x
(7)

The challenge of solving equation 7 is that since θ is defined over the airfoil (taking the flap angle δf into account),

it must be solved for γ(x) for 0 < x < c and for θ(x) for x > c. When discretized, Equations 5 and 7 can be solved

together with the Kutta condition and a specified initial jet angle at the trailing edge.

To calculate the pressure difference across the wing, we must remove the pressure turning the jet over the wing from the

circulation pressure. As such,

∆cp(ξ) ≡
∆p(ξ)
1

2
ρV2

∞

= 2
γ(ξ)

V∞
− ∆cJ

dθ

dξ
(8)

where ξ = x/c. The inviscid sectional lift and moment coefficients are then obtained as follows.

cℓ ≡
L ′

1

2
ρV2

∞c
=

∫
1

0

∆cp(ξ) dξ =

∫
1

0

2
γ(ξ)

V∞
dξ + ∆cJ (α − θTE ) (9)

cm ≡
M ′

1

2
ρV2

∞c2
=

∫
1

0

∆cp(ξ)

(
1

4
− ξ

)
dx =

∫
1

0

γ(ξ)

V∞

(
1

4
− ξ

)
dξ −

∫ ∞

1

∆cJ

(
1

4
− ξ

)
dθ

dξ
dξ (10)

IV. Methodology

A. Test Parameters

According to the blown-airfoil theory derivation in section III, the blown airfoil cℓ and cm are functions of α,∆cJ, δf ,

and h/c. Although the propulsor position zp and angle δm are not treated by this theory, they must have some effect

in the real flow. The Reynolds number will also clearly have an influence. Based on this, the wind tunnel model was

designed to control for these 5 variables, via the physical test parameters listed in table 1. Sections IV.B & IV.C describe

the test design in detail.
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Table 1 Controlled Test Parameters

Parameter Tested Values

Engine Mount Angle [deg] 10, 20

Propeller Height [in] 2.11, 2.33

Flap Angle [deg] 0, 20, 40, 55, 90

Angle of Attack [deg] -10, -5, 0, 5, 10, 15, 20, 25

Nominal Motor Current [A] 1, 4, 7, 10, 13, 16, 19

Nominal Tunnel Speed [m/s] 8.94

Fig. 3 Cross-section schematic of experimental set up.

Fig. 4 Photos of test rig. The left shows a front view of the setup, and the right shows a closeup of the wake

survey rake.
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B. Test Rig

The quasi 2-dimensional model was tested in the Wright Brothers Wind Tunnel (WBWT), which has a 7 ft × 10 ft

elliptical cross section. Two plywood endplates were mounted vertically covering the full height of the cross section to

constrain the flow between to be approximately 2-dimensional. The plywood boards were separated 1 ft above and

below the wing section by thin 1/4 in aluminum rod spacers to tightly constrain their spacing for the wing. The setup is

shown schematically in Figure 3. A front view is shown on the left in Figure 3.

A channeled 0.75 in diameter steel rod with universal joints on each was used as the main spar for the wing. At each end,

the rod was supported by pillow blocks with collar bearings holding the rod. The pillow block on one side was mounted

on a 10 lb load cell to measure drag and, on the other side, a lift load cell (10 lb) was used. The rod was restrained

against pitch rotation by a 3.5 in lever arm, attached to a 2 lb load cell which thus measured the pitching moment. The

lever arm angular position on the wing spar rod was varied to set the wing section angle of attack. Each data point was

recorded by measuring a 5-second average of the voltage reading on all three load cells, at a frequency of 1000 Hz.

Standard calibration techniques were used to decouple the readings of the 3 load cells, as explained in the appendix.

A pitot rake with 30 tubes at 0.08 in spacing was mounted on a 2D traverse, and was used to measure the velocity ratio
V
V∞

in the wake of the model. The rake tips were positioned 0.3 in behind the trailing edge of the wing. During a test, the

traverse ran a total of 5 passes across the span of the test section, with each pass shifted vertically so that the full extent

of the wake could be captured. The rake was angled 30◦back from vertical so that the tubes would be better aligned with

the flow exiting the trailing edge of the deflected flap. The right side of Figure 4 shows the setup of the rake in the

tunnel. The pitot tubes measure the total pressure loss or gain at their position. The total pressure is then converted to a

"far downstream" velocity ratio by comparing it to a reference total pressure which is taken from the freestream.

C. Wing Section

Fig. 5 CAD rendering of the wing sections displayed in side and rear isometric views.

The test wing has a 23.88 in span and a 9 in chord with the flap retracted. It was built in four identical sections, each

composed of: the main element, flap, flap brackets, motor mount, and motor.

Each main element and flap section is a 5.97 in spanwise extrusion of a 2D airfoil (fig. 5). The airfoil components were

printed in PLA (MatterHackers, PRO series PLA) using the Prusa i3 Mk II. The four section slide onto the spar to form

the entire wing. Two channels for wiring were built into the wing sections to allow wires to travel within the segments.

The aft channel was used for the majority of the wire travel. Then, a bridging area was used to break off from the aft

channel (without spar interference) and get into the front channel that housed the actual motor mount connections.

The spar runs the length of the wingspan and a little beyond the endplate walls. Just outside the walls, the spar connects

with U-joints that connect the spar to the load cells. Each main section is fixed to the spar using counter-sunk screws

and aligned with the other sections by the spar and a dowel pin. A channel is milled into both ends of the spar to allow

wires to pass through the wall channel and into the wing without interfering with the wall itself.

The flaps were made similarly to the main wing section, printed in PLA (MatterHackers, PRO series PLA) using the
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Prusa i3 Mk II. Each flap has two dowel pins to connect between each of the four sections. The flaps and main sections

were connected using eight flap brackets, water-jetted from 0.04 in steel sheet, and retained by a set screw in both the

main section and the flap. A separate set of brackets was used to set each tested flap angle δf .

Fig. 6 Two CAD renderings demonstrating the motor mount design.

The motor mounts (Fig. 6) fit into a receiving inset printed in the main wing section, aligned via 2 dowel pins and

secured to the main spar with a 6-32 stainless steel screw. The motor mount offers 4 channels for the screws to bind the

motor to the motor mount. The channels were wrapped with tape after the motor was connected. Each motor mount is

set to a specific angle and height, requiring a new mount for varying either of those variables. However, the mounts

were interchangeable as the motor mount only involves one screw to attach to the wing. The motor mounts were printed

with ABS to prevent melting from the hot motors.

The motors (T-Motor F40 Pro II, 1600 KV) are run at 24 V with APC 5×4E-4 propellers. The ESC (YEP Brand ESC,

40 A) control the angular velocity of the propellers, determined using an analog stroboscope.

D. Data Processing

1. Determination of force coefficients

At each test point, the blowing power was controlled via a common PWM signal sent to the motors. The resulting RPM

was measured using a strobe, and correlated with ∆cJ as described below. The load cell calibration matrix was generated

by applying known forces at the model center quarter chord, and the 3/4 chord for the moment. Wind-off tares were

taken before each data run. The tared voltage readings from each test run are used to compute the lift force, streamwise

force and pitching moment via the calibration matrix. Details can be found in appendix .B. The non-dimensional

coefficients cℓ , cx , and cm are then obtained from their definitions and assuming that that the sectional lift force L ′ ≈ L
b

.

2. Determination of jet momentum-excess coefficient

The jet momentum-excess can be determined by measuring the total pressure behind the propeller disc using a pitot tube.

To ensure consistent relative placement of the pitot between tests, this was performed with one motor unit mounted on

a load cell in a 1.5 ft x 1.5 ft open-jet wind tunnel, independent of the wing. The motor angular speed, free stream

velocity and motor axis angle were varied, while the pressure behind the propeller disc, and thrust force were measured.

To determine the jet momentum-excess, the motors and propellers were characterized independent of the wing section.

The jet momentum-excess coefficient is related to the jet mass coefficient, cQ, by

∆cJ = 2cQ

(
VJ

V∞
−

V∞

VJ

)
(11)
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where by classic propeller acutator disk theory,

(
VJ

V∞

)2

= 1 +
T

1

2
ρV2

∞πR2
(12)

and the jet mass coefficient is given by

cQ =
1

2

(
1 +

VJ

V∞

)
hd

c
(13)

where hd is the effective propeller disc height, which by mass conservation can be estimated as

hd

c
=

π(R2 − r2

h
) np

bc
(14)

where rh is the propeller hub radius and np is the number of propellers. The tested wing had
hd

c
= 0.35.

Figure 7 shows the thrust coefficient against the advance ratio V∞/ΩR for a range of V∞ between 0 and 15 m/s, where

the spread in the data points is likely due to Reynolds number effects. In the main wind tunnel tests, the motor current

draw and angular velocity were measured and the jet momentum-excess coefficient was determined using fig. 7.

0 0.05 0.10 0.15 0.20 0.25

Advance Ratio

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2 0.25

Advance Ratio

0

0.1

0.2

0.3

0.4
O

v
e

ra
ll 

P
o

w
e

r 
E

ff
ic

ie
n

c
y

Thrust Coefficient

Power Coefficient

0 deg

10 deg

20 deg

Fig. 7 Combined motor and propeller characterization test results. (a) Thrust and electrical power coefficients,

(b) Overall power efficiency curve of motor. Colors show the different angle of attacks of the motor relative to

free stream.

3. Data best-fit functions

For a given flap deflection angle, δf , and motor axis angle, δm, best fit surfaces were constructed to fit the experimental

data. In particular, it is known that (cℓ , cx , cm) at fixed δf and δm are functions of the angle of attack α and jet

momentum-excess coefficient ∆cJ .

Traditionally, drag is expected to have a quadratic dependence on α, and so it is assumed that the relation is similar for

for cx . At small angles, cℓ and cm are linear in α. However, it was found that a linear fit failed to capture the the stall

behaviour, which happens at even small angles due to the large flap deflections. From an anti-symmetry argument, an

α2 term can be reasonably excluded from the cℓ and cm curve fits. The α3 term, however, captures the effect of stall,

and so the cℓ and cm curve fits were chosen to be cubic in α, with good physical basis.

Since the effect of ∆cJ on cℓ , cx , and cm is unknown, it was assumed that the aforementioned angle-of-attack

polynomial coefficients are each themselves polynomial functions of ∆cJ .The degree of these polynomials was chosen

by trial-and-error to achieve a good fit to the data without over-fitting. For example, consider the curve fit for cℓ . The
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following function is to be minimized:

min

N∑

i=1

(

cℓi − f1(∆cJi ) − f2(∆cJi ) α − f3(∆cJi ) α
3

)2

(15)

where fk(∆cJi ) =

M∑

j=0

ak j∆cJi
j (k = 1, 2, 3) (16)

The ak j values are found by minimizing equation 15 with respect to the ak j . The value of M is chosen manually to

arrive at the most suitable fit. It was found that M = 1, indicating a linear effect of ∆cJ , resulted in the best fits. This is

in essence similar to a multivariate least squares regression scheme.

It is important to quantify the closeness of the best-fit functions in the approximation of the data in the range of collected

data. This is done using the Normalized Root Mean Squared Error (NRMSE). Let θ be the measured quantity (for

example, cℓ and θ̂ be the approximation to the quantity using the fit function, then NRMSE is defined as:

NRMSE =
1

θmax − θmin

√√√∑N
i=1

(
θ̂i − θi

)2

N
(17)

Table 2 NRMSE of the fits cℓ generated for different δf and δm

δf

0
◦

20
◦

40
◦

55
◦

90
◦

δm = 10
◦ 0.034 0.061 0.034 0.044 0.029

δm = 20
◦ 0.040 (-) 0.040 (-) (-)

Table 3 NRMSE of the cx fits generated for different δf and δm

δf

0
◦

20
◦

40
◦

55
◦

90
◦

δm = 10
◦ 0.040 0.072 0.043 0.060 0.069

δm = 20
◦ 0.039 (-) 0.071 (-) (-)

Table 4 NRMSE of the cm fits generated for different δf and δm

δf

0
◦

20
◦

40
◦

55
◦

90
◦

δm = 10
◦ 0.040 0.083 0.062 0.066 0.060

δm = 20
◦ 0.16 (-) 0.12 (-) (-)

Tables 2,3, and 4 show generally low NRMSE values for the fit functions, which indicates that the fits serve as a good

approximation to the discrete data points. It is worth noting, however, that table 4 exhibits high NRMSE values for the

cm fits in the δm = 20
◦ cases, suggesting that the fits fail to accurately represent the data in these cases.

V. Results

A. Force and Moment Coefficients
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represent the best-fit functions (explained in section IV.D.3) at constant ∆cJ , plotted at ∆cJ increments of 0.5.

B. Wake Characterization
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VI. Discussion

A. Force Coefficient Polars

The performance of the blown wing is summarized by the cℓ − cx polars shown in figures 13 and 14.

Figure 13 best demonstrates the effect of blowing on the wing. For δf ≤ 55
◦, increased ∆CJ expands the curve to the

more negative cx (more thrust) and to higher cℓ . The contribution of blowing to both cℓ and cx are well approximated

by a linear functions, as in last term of equation 9. For δ > 55
◦, it appears that this effect is dampened which is likely

due to the separation of the flap. This is especially evident in the δf = 90
◦ case where the curve compresses and inverts.

An important finding is that after induced drag is added to the measured cx values for any reasonable aspect ratio,

the aircraft will have a positive overall streamwise force (positive net drag). Thus landing is possible at very high cℓ
values. For example, for the δf = 40

◦ case at ∆cJ = 4.0 we have cℓ ≈ 8, cx ≈ 0. For AR = 10, these will give CL ≈ 7

and CX ≈ 1.3, with a CX

CL
= 0.18 which is an 11

◦ descent angle. For takeoff at δf = 20
◦ and ∆CJ = 4.0, we have

cℓ = 6, cx = −2, giving CL ≈ 5 and CX ≈ −1.5 and CX

CL
= −0.3, which is an 18

◦ climb angle. These estimates suggest

exceptional STOL performance.

B. Effect of Motor Axis Angle

The effect of the motor axis angle δm is compared for mounts of 10◦and 20◦in Figure 15. The most obvious distinction is

in the 40◦flap setting where the 20°mount setup appears to stall more suddenly and more aggressively than the 10°setup.

This suggests that upper surface separation may be occurring earlier due to the jet having to bend the extra angle to

stay attached to the upper surface. For lower δf tests, a different relationship is seen where the cℓ − cx slope is slightly

steeper, suggesting higher lift values for similar amounts of blowing. Also evident is the slight increase in overall thrust

in 10◦vs. 20°setups with very little loss of maximum attainable lift. This suggests that in the range tested, δf has a

relatively small impact on attainable lift.
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Fig. 14 cl-cx polars for 20◦motor axis angle. Points represent collected data, lines are polynomial fit.

C. Blown Wing Performance Relative to Hover

One major benefit of blown wings is the reduction in power needed for lift, as compared to direct vertical hover. This

ratio can be measured by the ratio of jet excess powers (defined in the appendix) in two cases: (1) a blown wing of chord
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Fig. 15 cℓ − cx fit function polars for δm = 10
◦ and δm = 20

◦, for α ranging from -5◦to 23◦. The data points

have been excluded for ease of visualization.

c and effective jet disk height hd requiring a lift force L and (2) a hovering 2D propeller of the same width hd , hovering

(i.e., V∞ = 0) with a thrust of T = L. As such, the ratio of powers is

∆cEB

∆cEH

=

(
1 +

VJB

V∞

) (
V 2

JB

V 2
∞

− 1

)

V3

JH
/V3

∞

(18)

and the jet speeds are related by the requirement that blown lift is the same as hovering thrust,

T = Ûm(VJ − V∞) = L =
1

2
ρV2

∞ c cℓ(∆cJ, α, δf ) (19)

∴

V2

JH

V2
∞

=

1

hd/c
cℓ(∆cJ, α, δf ) (20)

The ratio of powers is plotted in Figure 16, and demonstrates how for the power required to lift by blowing is significantly

less than the power required for hovering. As expected, the 90◦flap case shows little improvement, while the 40◦flap

exhibits best performance of the tested flap angles.

D. Separation of Upper Surface

The spanwise average of the wake velocity defect shown in section V.B gives insight into the physical characteristics of

the boundary layer on the blown wing. It is clear when comparing (a) and (b) that a separation region begins to form on

the upper surface at a relatively long α value. This is evidenced by the velocity ratio having a value less than 1 on the

upper surface. Interestingly, the separation increases in the presence of blowing . The presence of the separation on the

upper surface of the wing suggests that the vertical positioning of the propulsor, zm, could be shifted up. This would

hopefully lead to an increase in cℓ by decreasing viscous decambering but might come at the expense of increased

thrust for that cℓ which would be problematic for landing. This suggests that there may be optimum values for different

operating points. Further work in this area will be needed to understand the full extent of the effects.
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different flap angles and at α which maximizes cℓ

E. Pitching Moment Behavior

At δf = 0
◦, increasing the blowing increases the aircraft’s cm. This is expected since the blowing motor produces a

significant forward force below the quarter chord. For non-zero δf values, and low angles of attack, the impact of

blowing on cm is reversed. This is because the downwards deflection of the blowing jet by the flap represents an upwards

force acting on the airfoil aft of its quarter chord, contributing a negative pitching moment. However, at higher angles of

attack, flow separation is expected to occur on the flaps, meaning that the negative pitching moment contribution of the

flaps decreases. This is why we observe the lines of fixed ∆cJ in the cm − α plots of fig. 8 to converge at higher angles

of attack.

VII. Conclusion

Tunnel tests of blown flapped wing were conducted in MIT’s Wright Brothers Wind Tunnel. The tests sought to

characterize the effect the blown-wing parameters α, δf , δm, and ∆cJ on aerodynamic performance. The tunnel model

was designed to adjust these parameters and record the effects.

It was found that the blown wing had exceptional high-lift performance: at some flap angles,cℓmax
increased by nearly a

factor of 4 over the unblown case (fig. 13). This performance is also achieved with significantly lower power input than

would be required to create a comparable lifting force with direct thrust from the same propulsors. High cℓ values are

also achievable with small negative or slightly positive cx values, which is important during landing when both high lift

and high net drag are desirable.

Wake surveys conducted on the model indicate that that the concept has further room for improvement or optimization

for specific purposes. Upper surface separation shown in the rake surveys suggest that better motor positioning would

improve the concept. Additionally, the airfoil used was not optimized for blown performance, suggesting that further

performance improvements can be achieved with modified airfoils.
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Appendices

A. Derivation of jet excess power coefficient

The required power generating a jet is, in general,

∆P =
1

2
Ûm(V2

J − V2

∞) (21)

Considering the section at the disc, Ûm = ρhDVD = ρhD

(
V∞+VJ

2

)
, and therefore

∆P =
1

4
ρhD(V∞ + VJ )(V

2

J − V2

∞) (22)

Defining the jet excess power coefficient,

∆cE ≡
∆P

1

2
ρV3

∞c
(23)

we can determine the jet excess power for the blowing and hovering cases. In the hovering case (and not in the blowing

case) V∞ = 0. Therefore,

∆cEB =

1

4
ρhD(V∞ + VJB)(V

2

JB
− V2

∞)

1

2
ρV3

∞c
(24)

=

1

2

hd

c

(
1 +

VJB

V∞

) (
V2

JB

V2
∞

− 1

)

(25)

∆cEH =

1

4
ρhDV3

JH

1

2
ρV3

∞c
(26)

=

1

2

hd

c

V3

JH

V3
∞

(27)

And thus the ratio of blowing excess power to hovering excess power is

∆cEB

∆cEH

=

(
1 +

VJB

V∞

) (
V 2

JB

V 2
∞

− 1

)

V3

JH
/V3

∞

(28)

B. Load cell calibration matrix

There is expected to be mechanical coupling between the load cells, and this must be accounted for by computing a

voltage-load calibration matrix B. Then, we have, with v1, v2 and v3 representing the tared voltage measured by the

z-force, x-force and pitching moment load cells:




v1

v2

v3




=



B11 B12 B13

B21 B22 B23

B31 B32 B33






L

X

M




(29)

The entries of the matrix are calculated using known calibration loads, as follows:




B11

B21

B31




=




v1/Fcal

L

v2/Fcal

L

v3/Fcal

L




(30)
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


B12

B22

B32




=




v1/Fcal

X

v2/Fcal

X

v3/Fcal

X




(31)




B13

B23

B33




=




(
v1/Fcal

M
− B1L

)
/ℓ

(
v2/Fcal

M
− B2L

)
/ℓ

(
v3/Fcal

M
− B3L

)
/ℓ




(32)

Where ℓ represents the length of the moment arm between the known load and the moment load cell. The calibration

matrix, along with tare runs, are generated whenever major configuration changes are made to the wing section (such as

changing flaps).

C. Polynomial data fit functional forms

Based on section IV.D.3, the polynomial fits are given by

cl(α,∆cJ ) =
[
1 ∆cJ α α∆cJ α3 α3

∆cJ

]
acl (33)

where acl is a 6 × 1 vector of coefficients. The dependency on flap angle is not explicitly included, but separate

coefficient vectors are determined for each flap angle.

Similarly, the polynomial fit for cx and cm are

cx(α,∆cJ ) =
[
1 ∆cJ α α∆cJ α2 α2

∆cJ

]
acx (34)

cm(α,∆cJ ) =
[
1 ∆cJ α α∆cJ α3 α3

∆cJ

]
acm (35)

Note, in the cℓ and cm fits α3 is used, while in the cx fits, α2 is used due to the symmetry of the problem. All angles in

fits are based in degrees.

Table 5 cℓ fit coefficients

δm = 10
◦ δm = 20

◦

δf = 0
◦ δf = 20

◦ δf = 40
◦ δf = 55

◦ δf = 90
◦ δf = 0

◦ δf = 40
◦

a1 1.95E-01 4.70E-01 1.34E+00 1.17E+00 8.95E-01 -5.64E-02 1.33E+00

a2 -1.86E-01 3.64E-01 8.40E-01 5.59E-01 3.31E-01 -2.81E-01 9.31E-01

a3 1.15E-01 1.50E-01 9.23E-02 8.91E-02 4.98E-02 1.23E-01 8.88E-02

a4 4.39E-02 3.91E-02 4.40E-02 2.32E-02 2.41E-02 5.81E-02 5.04E-02

a5 -5.10E-05 -2.08E-04 -1.01E-04 -2.89E-04 -8.98E-06 -4.06E-05 -1.60E-04

a6 -3.61E-06 7.89E-06 -2.84E-05 1.48E-05 7.62E-06 -7.88E-06 -8.25E-05

NRMSE 0.034 0.061 0.034 0.044 0.029 0.040 0.040
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Table 6 cx fit coefficients

δm = 10
◦ δm = 20

◦

δf = 0
◦ δf = 20

◦ δf = 40
◦ δf = 55

◦ δf = 90
◦ δf = 0

◦ δf = 40
◦

a1 2.52E-01 2.98E-01 2.18E-01 3.42E-01 7.30E-01 1.95E-01 1.33E-01

a2 -1.18E+00 -9.65E-01 -7.17E-01 -4.59E-01 -3.48E-01 -1.05E+00 -6.31E-01

a3 -3.93E-02 -7.73E-02 -2.12E-02 4.77E-03 -2.62E-02 -2.28E-02 -1.58E-02

a4 1.01E-02 3.57E-02 2.92E-02 9.10E-03 2.09E-03 -7.81E-04 2.36E-02

a5 2.00E-03 4.13E-03 1.19E-03 -5.17E-04 -2.04E-03 9.00E-04 5.54E-04

a6 4.16E-04 -4.92E-04 -9.20E-05 2.02E-04 5.70E-05 7.23E-04 3.18E-04

NRMSE 0.040 0.072 0.043 0.060 0.069 0.039 0.071

Table 7 cm fit coefficients

δm = 10
◦ δm = 20

◦

δf = 0
◦ δf = 20

◦ δf = 40
◦ δf = 55

◦ δf = 90
◦ δf = 0

◦ δf = 40
◦

a1 -2.24E-02 -6.14E-02 -2.09E-01 -1.60E-01 -1.30E-01 -2.22E-02 -2.28E-01

a2 4.83E-02 -3.97E-02 -9.81E-02 -7.74E-02 -3.33E-02 2.42E-02 -9.89E-02

a3 -3.42E-03 -5.20E-03 7.59E-04 2.19E-04 -8.37E-05 -9.37E-03 3.01E-03

a4 4.12E-04 1.73E-03 -6.46E-04 5.56E-04 2.69E-03 7.48E-04 -2.73E-04

a5 -5.06E-07 4.97E-06 -1.11E-06 1.05E-05 -7.00E-06 1.54E-06 4.59E-06

a6 2.32E-06 2.77E-06 7.76E-06 3.12E-06 -4.43E-06 3.25E-06 2.50E-6

NRMSE 0.040 0.083 0.062 0.066 0.060 0.160 0.120
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