
Imperial College London

Department of Aeronautics

Swing up Control of Very Flexible
Pendulums

Author:
Devansh Ramgopal Agrawal

Supervisor:
Prof. Andrew Wynn

A thesis submitted for the degree of

Aeronautical Engineering with a Year Abroad (MEng)

15 June 2020



Abstract

The swing up control of a 3D cart-pole with a very flexible beam is demonstrated using a geo-
metrically exact beam formulation. A novel control approach exploiting the inherent dynamics of
rotating systems is used to achieve the full, stabilised swing up control. The controller’s efficacy is
first demonstrated on a rigid pendulum, and then applied to the flexible pendulum case.



Acknowledgements

I would like to thank my advisor Prof Wynn and his student Marc Artola for their insight and
guidance on this project. Marc also wrote the bulk of the simulator that my work builds on, and
thus I thank him for freely sharing this with me and taking the time to explain it. I would also like
to thank my family for supporting me from the very beginning. Finally I must thank the midnight
cup of coffee that allowed me to finish this paper on time.



Contents

1 Introduction 9
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 11
2.1 Energy Shaping and Psuedo-Rigid-Body Paradigm . . . . . . . . . . . . . . . . . . 11
2.2 Modal-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Quaternion Dynamics and a Novel Controller 13
3.1 Quaternion Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Analytic Controller for Freely Rotating Rigid Bodies . . . . . . . . . . . . . . . . . 14
3.4 Swing up control of rigid pendulums . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.2 Energy Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.3 Orientation Based Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.4 An appropriate value for the controller strength, c . . . . . . . . . . . . . . 18

4 Flexible Beams 20
4.1 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Intrinsic Beam Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 Recovering displacements and rotations . . . . . . . . . . . . . . . . . . . . 22
4.1.3 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Finite Dimensional Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.1 Using only the intrinsic states . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Including a point control force . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.3 Including the motion of the base . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.4 Including gravitational forces . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Controller Design 27
5.1 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Design of Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 Stabilising cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.2 Orientation cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.3 Hybrid Cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Numerical Results 33
6.1 Figures of Merit, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Orientation based controller is able to orient the flexible pendulum . . . . . . . . . 34
6.3 Hybrid Controller Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4 Choice of c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Conclusion 39
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2



A Code: Rigid Pendulum Optimal Control 40

B Full Simulation Results 42

C Catmull-Rom Interpolation for quaternions 49

Bibliography 52

3



List of Figures

3.1 Analytic Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Definition of parameters for rigid pendulum. . . . . . . . . . . . . . . . . . . . . . 16
3.3 Rigid Pendulum Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Frames of reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Mode shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Visualisation of the cost matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Sparsity of cost matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 Performance of orientation based controller. . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Performance of Hybrid Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Impact of changing the controller strength c . . . . . . . . . . . . . . . . . . . . . . 38

B.1 Summary Image for Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.2 Summary Image for Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.3 Summary Image for Simulation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.4 Summary Image for Simulation 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.5 Summary Image for Simulation 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.6 Summary Image for Simulation 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.7 Summary Image for Simulation 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.8 Summary Image for Simulation 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.9 Summary Image for Simulation 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.10 Summary Image for Simulation 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.11 Summary Image for Simulation 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.12 Summary Image for Simulation 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.13 Summary Image for Simulation 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.14 Summary Image for Simulation 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.15 Summary Image for Simulation 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.16 Summary Image for Simulation 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4



List of Tables

3.1 Feedback controller weights for various types of controllers . . . . . . . . . . . . . . 18

6.1 Comparison of hybrid controller performance . . . . . . . . . . . . . . . . . . . . . 36
6.2 Impact of controller strength on response . . . . . . . . . . . . . . . . . . . . . . . 37

B.1 Summary of simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5



Nomenclature

ω angular velocity

ω(s, t) Angular velocity at each section of the beam at any given time

φ1i(s) i-th mode shape of x1

φ2i(s) i-th mode shape of x2

τ Control Torque

e1, e2, e3 Local frame of reference

f(s, t) Sectional force resultant at each section of the beam at any given time

fg(s) External sectional forces and moments due to gravity

g Gravitational force vector in the inertial frame

I Moment of inertia

m(s, t) Sectional moment resultant at each section of the beam at any given time

q(t) Modal coordinates

rcm(s) Offset between the sectional centre of mass and the elastic axis

v(s, t) Linear velocity at each section of the beam at any given time

x State vector

x1(s, t) Linear and angular velocities at each section of the beam at any given time

x2(s, t) Resultant sectional forces and moments at each section of the beam at any given time

δq Difference between current and reference augmented state vector

δu Difference between current and reference control vector

δij Kronecker delta, δij = 1 if i = k, δij = 0 if i 6= k

γ Strain vetor

κ Vector of curvatures and twist

κ0 Initial curvature and pre-twist

R+
d d-dimensional space of positive Reals

Rd d-dimensional space of Reals

L1 Linear operator on x1

6



L2 Linear operator on x2

U skew-symmetric operator

ωi natural frequency of i-th mode shape

ρI1 Polar Moment of inertia per unit length

ρI2 Moment of inertia about 2-axis per unit length

ρI3 Moment of inertia about 3-axis per unit length

ρ Density

ã skew symmetric matrix of a such that a× b = ãb

A Cross sectional area

C Compliance Matrix

c controller strength constant

Cτ Damping time scales matrix

Cd Cd = CτC
−1

D0, D1, D2 Coefficient matrices for linearised damping

E Matrix containing the initial curvature and pre-twist

Ed Energy Deficit - the difference between the current energy and the energy at the target
state

EA Direct tension stiffness

EI2 Bending stiffness about 2-axis

EI3 Bending stiffness about 3-axis

fo Weighting on Qorientation in hybrid cost functions

fs Weighting on Qstabilising in hybrid cost functions

GA2 Shear stiffness in 2-axis

GA3 Shear stiffness in 3-axis

GJ Torsional stiffness

In n× n identity matrix

M Mass matrix

Nm Number of mode shapes

P Cost weight matrix on terminal state

Q Cost weight matrix on states

q1i, q2,i Modal coordinates of the finite dimensional approximation

R Cost weight matrix on control input

s Curvilinear coordinate that defines the elastic axis of the beam

7



s∂ Boundary of the beam, s=0 and s=L

SO(3) 3D rotation group

t Time

8



Chapter 1

Introduction

The design of future, high-endurance, low-emissions aircrafts can greatly benefit from the use
of lightweight structures and wings with high aspect ratios. Such vehicles are therefore highly
structural flexible. With such structural flexibility and large aerodynamic loads expected from
high-performing aerosurfaces, the traditional separation of aero-elastic analysis from the flight
dynamics is not suitable. Furthermore, these systems are highly non-linear, and greatly coupled.
Such systems present a great challenge to the aircraft designer, as suitable tools for the analysis,
design, optimisation and control of these systems do not exist.

The need to develop “more advanced, multidisciplinary ... time-domain analysis methods appropri-
ate to highly flexible, morphing vehicles” was called for in the wake of NASA’s Helios mishap [1].
In particular, analysing the interaction and developing suitable control methods for such morphing
vehicles provides the motivation for this project.

Flexible structures are also of great relevance to a number of other areas: for instance, the fields
of soft robotics, and soft manipulators are seeking similar tools to, for instance, be able to control
a soft-elastic tendon for a robotic leg, or to morph the body to wrap around and grasp objects
[2, 3]. Biomedical research into the design and actuation of robotic, steerable needles also requires
controller design for safe operation [4, 5].

In this project, the swing up control of a highly flexible pendulum is attempted. While rigid pen-
dulums have been very well studied, a flexible beam acting as a pendulum is the simplest structure
that can be studied to gain insight into appropriate control methods for flexible structures.

1.1 Objectives

The design of a controller that can efficiently swing up a highly flexible beam pendulum, and
stabilise it in an upright position is the main objective of this work. The problem is a 3D, flexible
beam extension to the traditional cart-pole problem.

The focus of the research is on understanding the implications of an alternative approach in the
design of a controller, and to evaluate its suitability for the control of very flexible structures.

1.2 Contributions

In this paper a non-linear, geometrically exact beam formulation is used to reduce the structure’s
state into a low-dimensional state. From there a novel cost function that exploits the natural
dynamics of a structure is used to define an optimisation problem that is solved using Model
Predictive Control (MPC).

I demonstrate that this novel cost function is capable of uprighting a flexible beam, and that it
presents a few desirable properties, including ease of implementation, and extendability to more
complicated structures.

9



1.3 Organisation
This thesis is organised as follows: In Chapter 2, some background is provided as to the current
literature on the structural modelling and control of flexible structures is provided, and the rea-
sons for choosing the the current approach are discussed. In Chapter 3, quaternion dynamics is
introduced, and a new controller for quaternions is identified. The behaviour of this controller is
studied using a rigid simple pendulum and provides motivation to apply this controller to flexible
beams. Chapter 4 defines the beam model used in this control problem. We bring these together in
Chapter 5, where the novel control scheme is applied to the flexible beam and new cost functions
are defined. Finally Chapter 6 presents the findings of the paper, through numerical simulations
and analysis of the behaviour of the beams. In the conclusion, recommendations are made for
future research directions.

10



Chapter 2

Background

2.1 Energy Shaping and Psuedo-Rigid-Body Paradigm
The simple, rigid pendulum has been extensively studied, and many different control approaches
exist to control it, and the related family of problems: the acrobot, cart-pole, quadrotors etc.
These include energy shaping [6], partial feedback linearisation [7] and related methods that define
a feedback controller based on the difference between the current ‘energy’ of the system and the
desired energy. The word ‘energy’ is often used loosely to refer to some scalar quantity that can
be used in this way to define a controller. While simple and often effective, they are often hard to
design for complicated, coupled systems.

The energy shaping methods can be extended to multi-link pendulums easily [8] and thus many such
controllers are defined by energy based methods. For instance for the control of a flexible needle
as it is to pierce skin, Franco [4] uses an energy based approach - the slender beam is modeled as
a two-rigid-link structure with a spring to model the deflection of the beam, the so-called psuedo-
rigid-body paradigm [9]. While this offers a method to reduce the need for complicated Finite
Element Analysis (FEA) on compliant mechanism, the model does lose accuracy on the beam
dynamics.

Only a few flexible inverted pendulum control schemes have been published, but generally apply
ideas from the flexible manipulators [10] including Assumed Modes (mode shapes based on Euler-
Bernoulli or Timoshenko beam models for simplifed beam properties) or finite element based
approximations of the mode shapes. Gandhi [11] used these a modified version of these models to
produce an energy shaping based controller with a PID loop to stabilise a tip mass on a flexible
pendulum. His methods did not allow for full swing up control as they were linearised about the
upright position.

2.2 Modal-Based Models
Recently, there has been interest in developing richer, geometrically exact models of flexible struc-
tures and to study the control of such systems. These approaches were first identified by Simo et
al [12], allowing for energy preserving description of the beams in a partial differential equation.
To allow for control using methods appropriate for vibrations, these equations would need to be
written in a modal coordinates. Palacios [13] showed the equations could be written exactly with
only quadratic nonlinearity if written using the intrinsic form - using velocities and sectional forces
as primary variables rather than the displacements and rotations often used. The control of these
beams could then be written in a port-hamiltonian form, making it amenable to rigid-body con-
trol methods. The modal formulation has been used to demonstrate low-computational cost MPC
control of a flexible structures [14].

Since this approach is geometrically exact, it allows structures to be accurately modelled over a
wide range of operating conditions using only a small number parameters relevant to the control
problem. For example, an interpolation scheme was developed to smoothly bridge the structural
description over multiple operating regions [15].

11



Recently, Artola [16] demonstrated the stabilisation of a flexible inverted pendulum described using
the modal analysis as above. He employed a MPC scheme to determine the optimal control input,
as it could reduce the time horizon that the optimiser had to operate in, and because he could
introduce perturbations during a simulation and determine the robustness.

This work extends Artola’s model applying a novel controller (defined in Chapter 3) to achieve full
swing up of the pendulum.

12



Chapter 3

Quaternion Dynamics and a Novel
Controller

In this chapter, the dynamics of a rigid body with rotation described by quaternions is examined.
An observation is made on the evolution of the quaternions, and thus a rigid body controller that
has useful properties is defined. The primary purpose of this chapter is to provide motivation for
the flexible pendulum controllers defined in Chapter 5.

3.1 Quaternion Dynamics
The quaternion ξ(t) = [ξ0, ξ

T
v ]T : R+ → R4 where ξ0 ∈ [−1, 1] and ||ξv|| ∈ [0, 1] is used to

parameterise rotations. These describe a rotation of θ radians about the unit vector l,

ξ0 = cos (θ/2) (3.1)
ξv = sin (θ/2)l (3.2)

and therefore we must have

||ξ||2 = ξ20 + ||ξv||2 = 1 (3.3)

This rotation can also be described by a rotation matrix, T ∈ SO(3), [17, Ch.20]

T (ξ) = (1− 2||ξv||2)I3 + 2ξvξ
T
v + 2ξ0ξ̃v, (3.4)

where ã denotes the skew-symmetric matrix of a such that ãb = a × b, and I3 is the 3 × 3
identity matrix. The evolution of the quaternion is given by

∂ξ

∂t
=

1

2

[
0 −ωT
ω −ω̃

] [
ξ0
ξv

]
(3.5)

where ω(t) : R+ → R3 is the angular velocity of the body.

3.2 Insight
Suppose we are able to construct a controller that satisfies for all time,

ξv = −1

c
ω, (3.6)

where c ∈ R+ is a positive scalar constant. Then using Equation (3.5) we have,

∂ξ0
∂t

= −1

2
(−cξv)T ξv =

c

2
ξTv ξv (3.7)

13



and

∂ξv
∂t

= −1

2
cξ0ξv +

1

2
cξv × ξv (3.8)

= − c
2
ξ0ξv (3.9)

∴
∂||ξv||22
∂t

= 2ξTv
∂ξv
∂t

(3.10)

= 2ξTv

(
− c

2
ξ0ξv

)
(3.11)

= −cξ0||ξv||22 (3.12)

Inspecting these equations, we can see that ∂ξ0
∂t > 0 if c > 0. Furthermore, if cξ0 > 0, we have

∂||ξv||2
∂t < 0. This suggests that regardless of the starting state, ξ0 must increase, and therefore will

become positive at some point, and tend to its maximum value of 1. Once ξ0 > 0, we must have
that ||ξv|| decreases. Since ||ξv|| ∈ [0, 1], we can say

lim
t→∞

ξ(t) = [1, 0, 0, 0]T (3.13)

Therefore, if a controller allows a body to satisfy Equation (3.6), the controller will naturally
drive the quaternion of the body towards the state where the transformation matrix is the identity
matrix,

lim
t→∞

T (ξ(t)) = I3 (3.14)

This is key result motivates the rest of this work. In the next section, the behaviour of this controller
is analysed in more detail, later it is applied to the swing-up control of a rigid pendulum.

3.3 Analytic Controller for Freely Rotating Rigid Bodies

To understand the implications of Equation (3.6), imagine a freely rotating rigid body in 3D.
Assuming the linear motion is decoupled (and thus omitted), and the only torque acting on the
body is due to an externally applied control torque τ (t) : R→ R3. The dynamics of the body (in
body reference frame) using the state x = [ξT ,ωT ]T are

∂ξ

∂t
=

1

2

[
0 −ωT
ω −ω̃

] [
ξ0
ξv

]
(3.15)

I
∂ω

∂t
+ ω × (Iω) = τ (3.16)

where I ∈ S3
++ is a symmetric matrix describing the moments of inertia in the body reference

frame. Expanding Equation (3.7),

∂ξ0
∂t

=
c

2
ξTv ξv =

c

2
(1− ξ20) (3.17)

we arrive at a decoupled ordinary differential equation in ξ0, that can be solved to give

ξ0(t) = tanh

(
ct

2
− c1

)
(3.18)

Substituting this into Equation (3.9), we have

∂ξv
∂t

= − c
2

[
tanh

(
ct

2
− c1

)]
ξv (3.19)

which is a decoupled non-linear ODE in each dimension of ξv. We can solve for this analytically
too, and using Equation (3.6) and Equation (3.16) solve for the angular velocity and required

14



torque as functions of time,

ξv(t) = sech

(
ct

2
− c1

)
c2 (3.20)

ω(t) = −c sech

(
ct

2
− c1

)
c2 (3.21)

τ (t) =
c2

1 + cosh(ct− 2c1)

(
2c2 × (Ic2) + sinh

(
ct

2
− c1

)
Ic2

)
(3.22)

where

c1 = − arctanh ξ0(0) (3.23)

c2 =
ξv(0)

||ξv(0)||
(3.24)

are determined from the initial values of ξ. Note, ω(0) = −cξv(0) is a fixed parameter based on
the choice of c.

These solutions provide interesting insights:

1. Notice that the controller strength parameter c only appears in the evolution of ξ as ct, and
therefore c can be interpreted as the inverse of a time scale for the quaternions.

2. We can bound the maximum torque needed for such a controller to be

||τ ||max ≤ c2
∣∣∣∣∣∣∣∣c2 × (Ic2) +

1

4
Ic2

∣∣∣∣∣∣∣∣ ≤
(

2 +
√

5

4

)
c2||I|| ≈ 1.06c2||I|| (3.25)

The maximum torque required is proportional to c2, allowing us to pick c based on torque
limits.1 Note, the latter bound is much looser than the former for most c2, I

3. Without any external forces, the controller maintains the angular velocity and ξv about
their respective initial axis. While this makes the rotation effectively 2D, the direction and
magnitude of the torques (in the body frame) will change over time.

4. While all states should bring the body to the desired final state, the controller struggles
near ξ0 = −1 and ξv = [0, 0, 0]. This is because T (ξ) = T (−ξ), that is, a quaternion and
its negative represent the same rotation. [17]. However the controller is unable to see this,
and could cause a full rotation rather than stabilising the point (as in the first two rows
of Figure 3.1). This issue is easily solved if we account for this while specifying the initial
conditions, taking care to express them in the form closer to the [1, 0, 0, 0] target point.

At ξ = [−1, 0, 0, 0], the controller would take an infinite amount of time to reach the target
state. For a small perturbation (for example ξ0(0) = −0.99), the controller reaches the target
in ∼ 10/c seconds (Figure 3.1).

5. The time taken to for the quaternion’s scalar component to be greater than some threshold
(ξ0(t) ≥ ξ̂0) can be found analytically,

t =
2
(

arctanh (ξ̂0) + c1

)
c

(3.26)

and for ξ̂0 = 0.9 we have t ≥ (2.944 + 2c1)/c.

The response due to this controller is shown in Figure 3.1 from 5 different starting states. ξ, for
c = 1. We can see that despite no information on the target state being provided to the controller,
it can navigate to the expected state.

3.4 Swing up control of rigid pendulums
While the previous section provides analytical results on the behaviour of this controller, it (a)
neglects any external forces (b) does not allow for ω to deviate from the prescribed value based on c.
In this section, a toy problem of a 2D pendulum will be used to study this controller better.

1This simplification is possible since ||c2|| = 1

15



-1

0

1

ξ(0) = [-0.99,

0.00,

0.14,

0.00]
-1

-0.5

0

-0.2

0

0.2

-1

0

1
ξ(0) = [-0.49,

0.00,

0.87,

0.00]

-1

-0.5

0

-0.2

0

0.2

-1

0

1

ξ(0) = [0.00,

0.00,

1.00,

0.00]

-1

-0.5

0

-0.2

0

0.2

-1

0

1

ξ(0) = [0.49,

0.00,

0.87,

0.00]

-1

-0.5

0

-0.2

0

0.2

0 5 10
-1

0

1

ξ(0) = [0.99,

0.00,

0.14,

0.00]

0

1

2

3

0 5 10
-1

-0.5

0

1

2

3

0 5 10

-0.2

0

0.2
1

2

3

ω [rad/s] τ [Nm]ξ

Figure 3.1: Analytic Controller. Each row represents the solution from a different starting quater-
nion, indicated on the left. The columns show the quaternion components, the angular velocity
and the torque applied.

3.4.1 Problem definition

θ
Mg

τ

length l

Figure 3.2: Definition of parameters for rigid pendulum.

Consider a rigid beam pendulum, with length L = 1 m, total mass M = 1 kg which is uniformly
distributed across the beam. It starts in the downward stable position, (θ = π), and the target is
to reach θ = 0 using a torque at the pivot point τ . Gravitational acceleration g0 = 9.81 m/s.

The dynamics are therefore given by,

∂θ

∂t
= ω (3.27)

∂ω

∂t
=
τ + (Mg0L/2) sin θ

ML2

3

=
3τ

ML2
+

3g0
2L

sin θ = 3τ +
3g0
2

sin θ (3.28)

3.4.2 Energy Shaping
The energy of the pendulum is given by

E =
1

6
ω2 +

g0
2

cos θ (3.29)

16



and defining the difference between the current and target energy as Ed = E − g0/2, the rate of
change of the energy deficit is

Ėd =
1

3
ωω̇ − g0

2
sin θθ̇ = ωτ (3.30)

therefore, if

τ(t) = −kωEd = −kω
(

1

6
ω2 +

g0
2

(cos θ − 1)

)
(3.31)

Ėd = −kω2Ed (3.32)

the controller will bring the energy deficit to asymptotically to 0. The closed loop dynamics
under this controller is shown in Figure 3.3 for k = 0.1. However there a few issues with this
controller:

1. The controller is not stabilising. The fixed point in the upright condition is attractive, but
not stable. This is because the Lyapunov function (Ed) as stated above is not positive for all
(θ, ω) not at the fixed point. The fixed point is attractive in that the controller will always
add energy when the system energy is lower than the target set point, and remove energy in
when system energy is higher than it should be. Since there is only one fixed point where the
energy deficit is 0, the system with the energy shaping controller is attracted to this point.

2. An example of this instability is seen if we imagine a state near the equilibrium but with
positive ω and negative θ. This situation would (under open loop dynamics) move towards to
fixed point. However the torque can be negative! Combined with the fact that the controller
is unstable, there are situations in which the pendulum will go all the way around instead
of being stabilised near the upright condition. As such, a second controller (often a Linear
Quadratic Regulator) is used near the equilibrium point [6].

3. The initial condition (θ, ω) = (π, 0) is stable, and under this controller, no torque will be
applied. As such, for it to start swinging, a small perturbation must be provided.

3.4.3 Orientation Based Controller
To define a controller that tracks Equation (3.6), we define a optimal control problem,

J = minimize
τ(t)

∫ tf

0

∣∣∣∣∣∣ξv +
ω

c

∣∣∣∣∣∣2 dt (3.33a)

This controller was chosen as it would minimise the time averaged error in ξv = −ω/c. However
this can also cause it to act against the natural dynamics of the problem, unlike the energy shaping
methods which seek to slightly modify the dynamics of the system to allow them to reach the target
state. There may be other ways to encode the desired behaviour, for instance

J =

∫ tf

0

Ψ(t)
∣∣∣∣∣∣ξv +

ω

c

∣∣∣∣∣∣2 + τTRτdt (3.34)

where Ψ(t) is weighting function that places greater weight at a future time (for example, Ψ(t) =
tanh(t/tf ) or Ψ(t) = t2). In this way, the controller might use the initial time to place the state
on a trajectory that will be close to satisfying ξv = −ω/c while not trying to fight the dynamics.
In this work however, the behaviour of Equation (3.33) was the focus, and thus the choice and
impact of Ψ is left for future research.

For a 2D problem, we can simplify Equation (3.33) to

J = minimize
τ(t)

∫ tf

0

(
sin

(
θ

2

)
+
ω

c

)2

dt (3.35a)

subject to dynamics, (3.35b)
θ(0) = π, ω(0) = 0 (3.35c)

17



This non-trivial optimisation problem must be solved numerically (using a psuedo-spectral method
[18]), and results for various c are shown in Figure 3.3. Full implementation details are listed in
the appendix.

3.4.4 An appropriate value for the controller strength, c
There is one particular value of c that yields interesting results. Suppose c =

√
6g0. In this case,

if our controller was perfect, we could write

ω = −
√

6g0 sin
θ

2
(3.36)

∴ ω̇ = −
√

6g0 cos
θ

2

θ̇

2
(3.37)

= −
√

6g0
2

cos
θ

2

(
−
√

6g0 sin
θ

2

)
(3.38)

=
3g0
2

sin θ (3.39)

which is exactly the dynamics of the pendulum! Using c =
√

6g0 ≈ 7.67, we have defined the path
as that which has the same energy as the target state, and thus the new controller can suggest the
same control law as that from energy shaping.

We can also show that near the upright position, the LQR results based on the new controller
(referred to as the orientation based controller) match those from a torque minimising controller
using the weights,

Qtorque =

[
1 0
0 1

]
Rtorque = 10 (3.40)

Qorientation(c) =

[
1/4 1/(2c)

1/(2c) 1/c2

]
Rorientation = 10−10 (3.41)

where Qorientation is the linearised version of Equation (3.35) and the small cost on R was nec-
essary since LQR algorithms are ill-defined for singular R. The LQR problem was solved using
Mathematica, for various c, and the weights of each controller (τ = −K

[
θ, ω

]T )is listed be-
low.

Table 3.1: Feedback controller weights for various types of controllers

Type K1/||K|| K2/||K||
Torque 0.967223 0.253939
Orientation, c =

√
6g0 0.967660 0.252257

Orientation, c = 1 0.447248 0.894410
Orientation, c = 10 0.980578 0.196129
Orientation, c = 100 0.997779 0.066118

These results show that the orientation based controller for c =
√

6g0 has exactly almost exactly
the same behaviour as the LQR applied at the upright position.

18



2

0

-2

-4

-6

-8

-10

-12

543210-1-2

θ (rad)

ω
 (

ra
d

/s
)

Open Loop

Energy Shaping
Starting Point

c =
 3

0

c = 10

c = sqrt(6 g
0
)

c = 1

20

-60
0 1

-10

10

0 6

0

E
n

e
rg

y
 D

e
fi

ci
t 

(J
)

10

-50

To
rq

u
e

 (
N

m
)

0 6

Time (s)

2 41 2 3 4 5

-40

-30

-20

-10

0
5

-5

1 3 5

Time (s)

a

b c

c=1
c=sqrt(6g

0
)

c=10

Figure 3.3: Rigid Pendulum Dynamics. (a) State space diagram for a simple pendulum showing
the open-loop controller (blue) and the closed loop control for energy shaping (red). Note, θ = 0
for the upright situation. Dashed lines show solutions to sin θ/2+ω/c = 0 for various c. Solid lines
indicate solutions of the optimal control problem Equation (3.35) for corresponding c. (b) Control
history for these solutions. Inset shows the initial area at higher magnification. (c) History of
energy deficit for these solutions.

19



Chapter 4

Flexible Beams

The control of highly flexible structures is challenging, not only because the physical models and
dynamics are far more complicated, but because the size of the problem to describe these flexible
structures is necessarily much greater. A simple rigid pendulum can be described by two states:
θ, ω and only a few parameters are needed to fully describe its behaviour: M,L, I, g0. An equivalent
flexible beam, as will be described in much greater detail in the next section, requires knowledge
of these states at each position along the beam’s length.

Furthermore, classical beam theories like the Euler-Bernoulli beam theory or the Timoshenko flex-
ible beam theory are not geometrically exact, and fail to accurately describe the beams behaviour
for large deformations. Here I use geometrically exact non-linear beam theory described by [16]
to capture the deformations and dynamics precisely. The theory allows us to account for a few
key effects that arise from the interaction of rigid body motion, axial deformations, beam bending,
and twisting: (1) the geometrically stiffening effect, where the deformed structure is stiffer due to
the reorientation of stress fields to the in-plane directions (2) changes of global inertia due to the
changing shape of the sections, and (3) the follower force effect, which allows the force acting on a
section to be affected by the local orientation. Accounting for these effects is crucial to describing
the 3D behaviour the beams and plates. In this work the deformations and rotations are primarily
present in 2 of the 3 space dimensions, although the full 3D structure is used in analysis and
simulation.

To solve for the optimal control of these highly flexible beams, a Non-linear Model Predictive
Control (NMPC) method is employed. NMPC has high computational cost when computing the
behaviour of high dimensional systems. Indeed, a continuous highly flexible beam has infinite
dimensions. A direct discretization of such a beam, using methods like Finite Elements, may have
thousands of state variables and would be computationally intractable. A modal description using
the beam’s primary states (displacements and rotations) may have models with O(102) states to be
describe the beam accurately. In this work, a reduced order modal system is used with an intrinsic
formulation. In this analysis, the velocities and angular velocities of the beam are tracked, and thus
require O(10) states. This allows the problem to be far more computationally tractable. However
the primary variables are now derived from these intrinsic states by integration, introducing some
complexity.

In the following sections, the structural model for highly flexible beams is described, including a
method to determine the primary states. Next, the finite dimensional approximations to produce
the reduced order model is described, and the particular beam structure for this work is presented.
The extension to include gravitational forces is described.

4.1 Structural Model

4.1.1 Intrinsic Beam Formulation

In this section, the geometrically exact, fully intrinsic non-linear beam theory model of Hodges
[19] is described. The dynamics of the structure are described by two intrinsic states: the linear

20



s

e
3
(0)

e
1
(0)

e
2
(0)

e
3
(s)

e
1
(s)

e
2
(s)

r(s)

e*
3

e*
1

e*
2

Figure 4.1: Frames of reference on a flexible beam (thick, grey). Global frame (black), base frame
(blue) and frame at some arbitrary location along the elastic axis, s (red)

and angular velocities at each of location along the beam, x1(s, t) := [vT ,ωT ]T : [0, L]×R+ → R6

and the resultant sectional forces and moments, x2(s, t) := [fT ,mT ]T : [0, L]× R+ → R6 where s
is the curvilinear coordinate that defines the elastic axis and t denotes time.

The undamped equations of motions are written here in a local, body attached frame of reference
(e1, e2, e3 centred on the origin) such that e1 is tangent to the elastic axis (as in Artola [16]),

M
∂x1

∂t
− ∂x2

∂s
− Ex2 + L1(x1)Mx1 + L2(x2)Cx2 = f1 (4.1)

C
∂x2

∂t
− ∂x1

∂s
+ ETx1 − LT1 (x1)Cx2 = 0 (4.2)

where M(s) : [0, L] → S6++ is the symmetric positive definite mass matrix, C(s) : [0, L] → S6+
is the symmetric positive semi-definite compliance matrix (terms defined in the Nomenclature
section),

M = diag(ρA, ρA, ρA, ρI1, ρI2, ρI3) (4.3)
C = diag(1/EA, 1/GA2, 1/GA3, 1/GJ, 1/EI2, 1/EI3) (4.4)

and E(s) : [0, L] → R6×6 contains the initial curvature and pre-twist (for instance if the
structure is an arch),

E =

[
κ̃0 0
ẽ1 κ̃0

]
(4.5)

and L1 : R6 → R6×6 and L2 : R6 → R6×6 are defined by

L1(x1) =

[
ω̃ 0
ṽ ω̃

]
(4.6)

L2(x2) =

[
0 f̃

f̃ m̃

]
(4.7)

where, as before, the (̃·) is the cross-product operator.

The vector of external forces is f1 ∈ R6 contains both the forces and moments per unit length at
each section, and may depend on the state (ie intrinsic variables), the primary variables and/or
time.

Boundary conditions are described by either free conditions,

x1(s∂ , t)
Tx2(s∂ , t) = 0 (4.8)

21



or by prescribed a state,

x1(s∂ , t) = x1∂(t), x2(s∂ , t) = x2∂(t) (4.9)

For example, for a cantilevered beam, we must have x1(0, t) = 0,x2(L, t) = 0.

Therefore, this intrinsic description of the beam is independent of the primary variables, displace-
ments and rotations.

4.1.2 Recovering displacements and rotations

Since displacements and rotations do not appear in the formulation above, they must be derived as
dependent variables. There are two methods to determine theses: either by integrating the linear
and angular velocities in time from the initial starting state, or by integrating the local rotations
and extensions over the length of the beam.

In either case, we need the local orientation relative to an inertial frame of reference, e∗1, e∗2, e∗e.
A transformation matrix T (s, t) : [0, L] × R+ → R3×3 := T (ξ(s, t)) is defined in terms of Equa-
tion (3.4) and transforms bewteen the local and inertial frames of reference. The quaternions must
satisfy both

∂ξ

∂s
= U(κ+ κ0)ξ (4.10)

∂ξ

∂t
= U(ω)ξ (4.11)

where κ = [0, I3]Cx2 is the vector of curvatures and twist and U is the skew symmetric operator
acting on a ∈ R3,

U(a) =
1

2

[
0 −aT
a −ã

]
(4.12)

Similarly, the displacement field r(s, t) can be solved by either

∂r

∂s
= T (s, t)(e1 + γ) (4.13)

∂r

∂t
= T (s, t)v (4.14)

where γ = [I3, 0]Cx2 is the strain vector.

4.1.3 Damping

Damping is incorporated into the model using the Kelvin-Voigt model [16], by replacing[
f
m

]
→ C−1

[
γ
κ

]
+ CτC

−1 ∂

∂t

[
γ
κ

]
= x2 + Cτ

∂x2

∂t
(4.15)

where ˙(·) = ∂(·)
∂t and (·)′ = ∂(·)

∂s and Cτ ∈ S6+ is a matrix containing the time scales characterising
damping in the material. This allows us to write the nonlinear intrinsic beam equations with linear
damping as

M ẋ1 − x′2 − Ex2 + L1(x1)Mx1 + L2(x2)Cx2 = D0x1 +D1x
′
1 +D2x

′′
1 + f1 (4.16)

Cẋ2 − x′1 + ETx1 − LT1 (x1)Cx2 = 0 (4.17)

with the new boundary condition

x1(s∂ , t)
T (x2(s∂ , t) + Cd(x

′
1(s∂ , t)− ETx1(s∂ , t))) = 0 (4.18)

22



where Cd = CτC
−1 and

D0 = −(CdE
T )′ − ECdET (4.19)

D1 = C ′d − CdET + ECd (4.20)
D2 = Cd (4.21)

In this work, Equations (4.16) and (4.17) are used, and the specific parameters used match those
from Artola [16].

4.2 Finite Dimensional Model Reduction

4.2.1 Using only the intrinsic states

A finite dimensional approximation of the system dynamics is created using the natural modes
of the system [13]. The system is linearised about the unloaded and undeformed condition,
f1 = x1 = x2 = 0 and without damping,

M
∂x1

∂t
− ∂x2

∂s
− Ex2 = 0 (4.22)

C
∂x2

∂t
− ∂x1

∂s
+ ETx1 = 0 (4.23)

and is solved for non-trivial solutions of the form

x1 = φ1i(s) sin(ωit) (4.24)
x2 = φ2i(s) cos(ωit) (4.25)

where φ1i(s), φ2i(s) : [0, L]→ R6 are the eigenfunctions that describe the mode shapes, and ωi is
the associated natural frequency. Einstein summation notation is used, over indices i = 1, ...Nm,
where Nm is the number of mode shapes to consider. The eigenfunctions form an orthogonal basis
and are normalised such that ∫∫∫ L

0

φT1iMφ1jds = δij (4.26)∫∫∫ L

0

φT2iCφ2jds = δij (4.27)

where δij is the Kronecker delta. The mode shapes for the beam studied in this work is depicted
in Figure 4.2.

The modal expansion of the state is written as

x1(s, t) = φ1i(s)q1i(t) (4.28)
x2(s, t) = φ2i(s)q2i(t) (4.29)

where [q1(t), q2(t)] : R+ → R2Nm form the modal coordinates.

Equations (4.16) and (4.17) can then be expressed using the modal coordinates using the Galerkin
projection. Using the modal expansion (Equations (4.28) and (4.29)) in the dynamics, premulti-
plying by each eigenfunctions and integrating over the length of the beam, we obtain (full details
in [16])

q̇ = Wq +N(q)q +

[
η
0

]
(4.30)

where q(t) = [q1(t)T , q2(t)T ]T are the stacked modal coordinate vector of size 2Nm.1

1For numerical ease, the rigid body modes are removed from q2, as will be discussed later

23



0

0.5

1

0

0.5

1

0

0.5

1

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

0.5

-1

-0.5

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

-1

-0.5

-1

1

-1

0.5

1

0

1

2

3

4

0

1

2

3

4

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-50

-200

-100

0

100

200

-10

-5

0

5

10

-10

0

10

20

-10

-5

0

5

10

0 0.2 0.4 0.6 0.8 1
-10

0

10

20

-1

-0.5

-1

1

-1

0.5

1

0.5

1

-1

-0.5

0

50

100

-100

-50

0

50

100

0.5

-1

-0.5

-5

0

5

-10

-5

0

5

10

-10

-5

0

5

10

0 0.2 0.4 0.6 0.8 1
-20

-10

0

10

-1

-0.5

-1

1

-1

0.5

1

0.5

1

-1

-0.5

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

-0.4

-0.2

0

0.2

0.4

0

0.5

1

1.5

-2

-1

0

1

2

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

2

Velocity
Angular 

Velocity
Forces Moments

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

Mode 7

Mode 8

Mode 9

Mode 10

Mode 11

Mode 12

Mode 13

-1

-0.5

-1

1

-1

0.5

1

0.5

1

-1

-0.5

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0.5

-1

-0.5

0.5

-1

-0.5

2

-200

-100

-1

-0.5

-1

1

-1

0.5

1

-1

-0.5

-1

1

-1

0.5

1

0.5

1

-1

-0.5

s [m] s [m] s [m] s [m]

R
ig

id
 B

o
d

y
 M

o
ti

o
n

A
xi

a
l C

o
m

p
re

ss
io

n
A

xi
a

l T
w

is
t

B
e

n
d

in
g

 (
2

-a
xi

s)
B

e
n

d
in

g
 (

3
-a

xi
s)

Figure 4.2: Mode Shapes for the beam studied in this work, after normalisation. Blue, red and
yellow refer to [e1, e2, e3]-axis respectively.

24



The matrix W is a skew symmetric matrix

W =

[
Σ Ω
−Ω 0

]
(4.31)

where Ω is a diagonal matrix of eigenvalues and Σ is the modal damping matrix,

[Σ]i,j =

∫ L

0

φT1i(D0φij +D1φ
′
1j +D2φ

′′
1j)ds (4.32)

and N(q) is non-linear in q,

N(q) =

[
−q1lΓl1 −q2lΓl2
q2l(Γ

l
2)T 0

]
(4.33)

where

[Γl1]i,j =

∫ L

0

φT1iL1(φ1j)Mφ1lds (4.34)

[Γl2]i,j =

∫ L

0

φT1iL2(φ2j)Cφ2lds (4.35)

η contains all the forcing terms (gravity and control inputs in this work),

[η]i =

∫ L

0

φT1if1ds (4.36)

Note that W,Γl1,Γl2 are constant matrices and thus are precomputed offline.

The instantaneous energy of the system can be written as

ε(t) =
1

2
qTq (4.37)

and implicitly depends on the mass and compliance matrices through the normalisation (Equa-
tions (4.26) and (4.27)). This quantity contains both the energy associated with the rigid body
motion and the energy associated with the strain energy from all deformations. Gravitational
effects will be considered next.

4.2.2 Including a point control force
In general, the control force must be include as in Equation (4.36). In this work, the controller
will exert a linear force at the base of the pendulum, and thus ηu can be expressed as

[ηu]i =

∫ L

0

φT1i


ue1
ue2
ue3
0
0
0

 δ(s)ds = φ1i(0)Tu (4.38)

where δ(s) is the delta function, and [ue1, ue2, ue3]T is the force acting on the base in the local
reference frame of the beam.

4.2.3 Including the motion of the base
To allow the base location to be tracked, the location of the base in the inertial frame can be
exposed in the state. We introduce xbase into the state vector with dynamics,

∂xbase
∂t

= T (ξ(0, t))
[
I3, 0

]
φ1i(0)q1i (4.39)

25



4.2.4 Including gravitational forces
Gravitational forces act on the beam in a direction defined in the inertial frame of reference, in
particular, we have

fg(s, t) = µ(s)

[
I3

r̃cm(s)

]
T (s, t)Tg (4.40)

where fg(s) : [0, L] → R6 is the vector of sectional forces and moments caused by gravity,
µ(s) : [0, L] → R+ is the sectional mass per unit length of the beam, rcm(s) is the offset between
the sectional centre of mass and the elastic axis (0 for symmetric beam cross-sections), T describes
the transformation from the inertial to the local frame of reference and g is the gravitational
acceleration vector in the inertial frame. Therefore, the finite dimensional approximation of the
beam must include the orientation at each section, and encode the gravitational forces.

First, a finite dimensional approximation for the local orientation is developed. The local orien-
tation at all locations on the beam is described by a cubic Catmull-Rom interpolation scheme
between a few sampled points ξ(t),

ξ(s, t) = S(s)ξ(t) (4.41)

where ξ(t) = [ξT1 (t), ...ξTNξ(t)]
T : R+ → R4Nξ stacks the quaternions at Nξ specified locations

along the beam. Only a small number of points are needed to reasonably track the quaternions
along the beam, and in this work we chose Nξ = 3. Detailed investigation of the impact of Nξ is
beyond the scope of this work. The matrix S(s) contains the piecewise cubic interpolation ensuring
smooth matching at all tracked quaternions, and detailed derivation of this matrix is provided in
the appendix.

The Galerkin projection of the gravitational force therefore gives

ηg(ξ) = ηg0 + ξlΓ
l
gξ (4.42)

where

[ηg0]i =

∫ L

0

φT1iµ

[
I3
r̃cm

]
gds (4.43)

[Γlg]i,j =

∫ L

0

φT1iµ

[
I3
r̃cm

]
Tjl(Sj , Sl)

Tgds (4.44)

where Sj is the j-th column of S(s) and

Tjl(ξj , ξl) = −2ξTj,vξl,vI3 + 2ξj,vξ
T
l,v + 2ξj,0ξ̃l,v (4.45)

where both ηg0 and Γg are constant matrices precomputed offline.

This allows the dynamics to be summarised as

q̇ = Wq +N(q)q +

[
ηg(ξ)

0

]
(4.46)

ξ̇k = U(Φωφ1(sk)q1)ξk, k = 1, ...Nξ (4.47)

where Φw = [0, I3] selects the angular velocity components from the state at each sample point sk
and U is the operator defined earlier.

This allows the dynamics to be written concisely as

∂

∂t

[
q
ξ

]
=

[
W 0
0 0

] [
q
ξ

]
+

[
N(q) ξlΓ

l
g

0 Nξ(q1)

] [
q
ξ

]
+

ηg00
0

 (4.48)

The entire system state is now captured in an augmented state vector, qa = [qT1 , q
T
2 , ξ

T ,xTbase]
T ,

and the dynamics in a standard form,

∂qa
∂t

= Â(qa)qa + B̂u+ Ĉ (4.49)

26



Chapter 5

Controller Design

5.1 Model Predictive Control

A conventional discrete time MPC formulation is used to solve Equation (4.49) for the control
history u(t). We assume the state if fully and exactly observable, and there are no external
disturbances. The solution is derived over a prediction horizon τp that is split into N intervals.

minimize
qka ,u

k

1

2
δqNa

T
PδqNa +

k=N−1∑
k=0

1

2
δqka

T
Qδqka +

1

2
δuk

T
Rδuk (5.1a)

subject to δq0a = δqa0 (initial condition), (5.1b)

qk+1
a = f(qka ,u

k) ∀k = 1, ...N − 2, (dynamics), (5.1c)
δuk ∈ [ul,uu] ∀k = 1, ...N − 1, (control limits) (5.1d)

where Q > 0 and R > 0 represent the cost function weights on the state and control inputs,
P > 0 is the cost on the terminal state within the prediction horizon and δqa = qa − qa,ref
and δu = u − uref represent the deviations of the state and control input from a reference
state and control input. The reference states are chosen to be a fixed point of the system, ie
q̇a = f(qa,ref ,ua,ref ) = 0.

While the discretisation time step for determining the control inputs is of length ts =
τp
N+1 , the

dynamics (Equation (5.1c)) are solved for using a more accurate Runge Kutta-4 integration of
the system dynamics Equation (4.49). This optimisation problem is solved using the parallelised
multiple shooting method which has desirable computational speed [16]. The code is implemented

27



using MATLAB, and a listing is available on Github.1

Algorithm 1: Overview of method used to solve for optimal control
Result: Optimal control history u(t)

1 Define problem parameters;
2 Load Mode shapes (precomputed offline);
3 Normalise mode shapes;
4 Compute coefficient matrices of Equation (4.49);
5 Solve for qa,ref ,uref ;
6 Specify initial state q ← qa0;
7 Specify initial guess for states over prediction horizon;
8 Solve for initial displacement and rotations;
9 Define Q,R, P ;

10 for (t = 0; t < tf ; t = t+ ts; ) do
11 (For each time step in simulation duration);
12 Reset BFGS Hessian estimate;
13 while ε > tolerance do
14 for (i = 0; i < N ; i+ +; ) do
15 (For each shot);
16 Determine final state of shot;
17 Determine sensitivity of final state of each shot to start state and control inputs;
18 Determine sensitivity of total cost to start state and control inputs;
19 end
20 Define equality and inequality constraints;
21 Update Hessian estimate (using BFGS);
22 Solve quadratic program for new estimate of start states and control inputs;
23 ε← Estimate of constraint violation;
24 Update start states and control inputs;
25 end
26 Select u0 and integrate forward one time-step (using RK4);
27 end

5.2 Design of Cost Functions

The cost matrices Q,R, P fundamentally control the behaviour of the beam and are the focus of
this work. First the design of cost matrices with desirable convergence properties is presented.
Next the design of a controller that exploits the natural dynamics of quaternions is presented. In
the following chapter they are implemented and compared.

5.2.1 Stabilising cost function

By including the quaternion in the state we have introduced linearly unstabilisable modes about
the target reference state with q1 = 0. Intuitively this means that if the beam is at rest in
an equilibrium condition, a small perturbation of the orientation will either induce oscillatory
behaviour (for instance if the pendulum was in its downright position) or exponentially diverge from
the equilibrium condition (for instance from the upright position). Therefore, the matrices Q,R, P
must be chosen such that the non-linear controller can stabilise these unstable modes.

Artola [16] defines the required Linear Matrix Inequality (LMI) conditions to prove the controller
can bring the flexible pendulum to an upright state from a region around this unstable equilib-
rium position. In particular he decomposes the state into stabilisable and unstabilisable modes

1https://github.com/dev10110/Final_Year_Project

28

https://github.com/dev10110/Final_Year_Project


δq = [wT ,dT ]T and defines the MPC cost function

V (δqa,u) = Vf (qNa ) +

N−1∑
k=0

l(δqka , δu
k) (5.2)

= wTPww +

N−1∑
k=0

(
β

4
wTPww + uTRu

)
(5.3)

thus only penalising the stabilisable states, and can be written in the standard cost function
formulation of Equation (5.1). For this cost function (and appropriately chosen β, Pw, Pd, R, it was
shown that there exists a controller that can drive the final state to where both wTPww and dTPdd
are bounded. Specifically we can chose the cost functions such that the former is (potentially) large
but the later is small. This means that the controller can bring the uncontrollable modes to a small
bound, and then asymptotically make the stabilisable modes arbitrarily small.

To avoid confusion, this cost function shall henceforth be referred to as the stabilising cost func-
tion.

The analysis however only proves this controller is stable for some region of initial states about the
reference state. In the next section, I propose a different cost function that makes no guarantees
of convergence, but produces desirable behaviour.

5.2.2 Orientation cost function

As demonstrated in the previous chapter, if a controller can impose a relationship between the
angular velocity and the vector component of the quaternion as

ξv = −ω
c

(5.4)

the quaternion will evolve towards the ξ = [1, 0, 0, 0]T state. Since the angular velocity cannot be
directly controlled, a suitable controller might be expected to minimise the error,

minimize
u(t)

∫ tf

0

∣∣∣∣∣∣ξv +
ω

c

∣∣∣∣∣∣2
2
dt (5.5)

To define an similar controller over a flexible beam, I propose the averaged error over the length
of the beam,

minimize
u(t)

∫ tf

0

∫ L

0

∣∣∣∣∣∣∣∣ξv(s, t) +
ω(s, t)

c

∣∣∣∣∣∣∣∣2
2

dsdt (5.6)

The spatial integrand can be expressed in terms of the modal coordinates,

∫ L

0

ξTv ξv︸ ︷︷ ︸
(i)

+
1

c
ξTv ω︸ ︷︷ ︸
(ii)

+
1

c
ωT ξv︸ ︷︷ ︸
(iii)

+
1

c2
ωTω︸ ︷︷ ︸
(iv)

 ds (5.7)

29



where each of the terms are

(i) :

∫ L

0

ξv(s, t)
T ξv(s, t)ds = ξT (t)

[∫ L

0

S(s)TΦTξvΦξvS(s)ds

]
ξ(t) (5.8)

= ξTQξξξ (5.9)

(ii) :

∫ L

0

1

c
ξTv (s, t)ω(s, t)ds =

1

c
ξT (t)

[∫ L

0

S(s)TΦTξvΦωφ1ids

]
q1i (5.10)

=
1

c
ξT [Qξω]iq1i (5.11)

(iii) :

∫ L

0

1

c
ω(s, t)T ξv(s, t)ds =

(
1

c
ξT [Qξω]iq1i

)T
(5.12)

(iv) :

∫ L

0

1

c2
ω(s, t)Tω(s, t)ds =

1

c2
q1i

[∫ L

0

φT1iΦ
T
ωΦωφ1jds

]
q1j (5.13)

=
1

c2
q1i[Qωω]ijq1j (5.14)

where Φξv = [0, I3] ∈ R3×4 selects the vector component of the quaternions, and Φω = [0, I3] ∈
R3×6 selects the angular velocity components of the q1 states. Note [Qξω]i refers to the i-th column
of Qξω. For simplicity I have assumed c is a scalar constant, although the extension for c being
state, space and/or time dependent is trivial.

Therefore, the cost weights Q can be written as

qTaQqa =
[
qT1 qT2 ξT xTbase

] 
1
c2Qωω 0 1

cQ
T
ξω 0

0 0 0 0
1
cQξω 0 Qξξ 0

0 0 0 0



q1
q2
ξ

xbase

 (5.15)

Based on the structure of Equation (5.15) we can make a few observations:

1. There is no weighting on the q2 states - this controller will make no effort to bring the
sectional forces and moments to their target values. As we will see later, this means that the
strain energy is only dissipated through damping, not due to the controller.

2. There is no weighting on the xbase states - we expect that this controller will not have any
tendency to being the base back to the origin.

3. The value of c will have an important effect in the response of the controller. For large
c, the cost on the angular velocity states is removed. Effectively this means that we loose
information on the beneficial coupling between ξv and ω. The controller will try to minimise
the vector component of all the quaternions without information on how they are related.
Furthermore, if c is not of an appropriate order of magnitude, the controller (as we saw in the
rigid body case) would spend effort in slowing down or speeding up the angular velocity. It is
reasonable to assume that the appropriate value of c therefore depends on model parameters,
initial conditions and material properties of the beam.

Before proceeding to numerical simulations of this new cost function, inspecting the numerical
values of Q provides further insight. Two modifications are made to the cost function to increase
numerical stability, and a hybrid cost function including both the stabilising controller and the
orientation based controller is introduced.

Modification 1: Removing Modes 8 & 9

To understand an appropriate order of magnitude for the controller cost c, Figure 5.1 shows
graphically the weights of the controller for different values of c. Initially, it seems that the
choice of c has little impact on the weights, as two particular weights Q8,8 and Q9,9 dominate the
weighting matrix completely. This makes sense as the angular velocity of the normalised 8th and
9th mode shapes have extrema of order 150 rad/s (Figure 4.2), while the quaternions states have
order 1.

30



However the angular velocity of modes 8 and 9 represent the rotations about the e1 axis, which are
not directly controllable. As such, removing them from the simulation will aid in the numerically
stability of the controller. This produces the ‘modified’ cost function Qmod, which sets Q8,8, Q9,9 to
0, and is visualised in the second row of Figure 5.1. The performance of the controller for different
values of c will be discussed with the results.

-1 -0.5 0 0.5 1

Q
Q

 (
M

o
d

)

q
1

q
2

ξ

x
base

q
1

q
2 ξ x

base
q

1
q

2 ξ x
base

q
1

q
2 ξ x

base

q
1

q
2

ξ

x
base

c=0.1 c=1 c=10

a

d

b c

e f

Figure 5.1: Visualisation of the cost matrices. (a,b,c) show the orientation based cost matrix, and
(d,e,f) show the modified cost matrix. Each matrix is normalised by its 2-norm. The dark lines
across the images show the block-matrix divisions of Equation (5.15).

Modification 2: Removing Mode 23

When deriving the stabilising cost function, we established that it only places a cost on the sta-
bilisable modes of the beam. If the orientation based controller makes no such assumption, does
it try to stabilise the unstabilisable modes?

Figure 5.2 shows the sparsity pattern of both matrices. We can see that the stabilising controller
has many more non-zero weights than the orientation based controller, in particular it also responds
to q2 and xbase. Furthermore, most of the weights for the orientation based cost function lie on
the stabilisable modes identified by the stabilising cost function.

Only mode 23 has weights in the orientation based controller where the stabilising controller does
not. This mode refers to the e1 component of the quaternion describing the orientation of the
base - the axial twist of the beam at the base. However as this is fixed in the problem (as a
boundary condition), it should not have an impact on the convergence of the controller. Indeed,
looking over the simulations (next chapter) we can see that mode 23 has small activations of order
10−4. For numerical reasons, the weights dependent on mode 23 can be removed before running
the optimisation problem.

In the next section, I discuss hybrid cost functions that include both the stabilising Q and the
orientation based Q and how they compare.

31



Q (Orientation)

Q (Stabilising)

5 10 15 20 25 30 35

5

10

15

20

25

30

35

q
1

q
2 ξ x

base

q
1

q
2

ξ

x
base

Figure 5.2: Sparsity of cost matrices. Each blue dot indicates the entries of the stabilising cost
matrix that are non-zero, and each red dot corresponds to those of the orientation based controller.
Only weights associated with mode 23 are non-zero in the orientation based controller but not in
the stabilising cost matrix. ‘Non-zero’ is defined as |(Qij)| > 10−12.

5.2.3 Hybrid Cost functions
As noted earlier, the orientation based controller makes no effort to bring the base to the origin or
to stabilise the q2 states or the rigid body motion. As will be demonstrated in the next chapter, we
observe such behaviour numerically. Thus, a hybrid controller is desirable - away from the upright
condition, the MPC should use the orientation based controller to drive the flexible pendulum
towards an upright condition. Once close to the upright condition, the stabilising controller can
be used effectively to bring the pendulum to the desired final state.

This can be implemented directly in code using conditional statements. We could define a small
region around the upright condition and switch cost functions midway during the simulation from
the orientation based controller to stabilising controller. There are a few limitations though: (1)
this terminal region would need to be defined rigorously, (2) a sudden switch in the controller cost
function will not produce a smooth transition, and it is likely that a sudden change in the applied
force will destabilise the orientation of the pendulum (3) if only the orientation based controller is
used outside this terminal region, the pendulum could drift very far from the the origin - far enough
to not be able to reach the terminal region. Artola [16] rigorously defines a condition that can
be checked to see if the stabilising controller will converge and thus limitation (1) can be solved.
However limitation (3) was frequently observed in simulations that attempted this scheme.

Instead, a hybrid cost function that is not changed during the simulation is desirable. A simple
normalised sum of the two cost functions can be defined

Qhybrid = fs
Qstabilising
||Qstabilising||2

+ fo
Qorientation,mod
||Qorientation,mod||2

(5.16)

where fs and fo represent scalar weights that will be tuned in the next chapter, and the modified
orientation based controller is used.

32



Chapter 6

Numerical Results

In this chapter the results and insights gained through a numerical study are discussed. Since
of primary interest is the design of the cost function, comparing different simulations on the
convergence or final value of the cost function is irrelevant. Instead, we have physically desirable
behaviours: the controller must bring the pendulum from a downright to an upright position. It
is desirable for this to occur with minimal control effort, requiring as little volume (equivalent of
the rail length for classical cart-pole problems) and as quickly as possible, both in physical time
and the computation time. Furthermore, as the beam is flexible, we also need the beam to be
‘straight.’

In the first section I define these figures of merit precisely. Next, the simulations performed are
presented, and the following key results are identified and supported:

1. The orientation based controller is able to bring the pendulum to an upright configuration

2. The controller strength c controls the time taken to make the pendulum upright

3. Fusing the stabilising controller with the orientation based controller is beneficial

6.1 Figures of Merit, V

• Control Effort

The control input is the (linear) force acting at the base, fu. I define the controller effort in
the traditional sense,

Vu =
1

tf

∫ tf

0

||fu − furef ||dt (6.1)

Since the maximum controller input was bounded for all simulations, fu,i < 10 N, i = 1, 2, 3,
it is not included as a figure of merit.

• Simulation Bounds

A significant challenge of controlling the traditional cart-pole is the bounded rail length. In
this 3D extension to the cart-pole, the volume in which the base moves maybe considered an
equivalent figure of merit. However as the simulations lie in the e1, e3 plane, we will define
two figures of merit based on the minimum area required: (1) the minimum rectangular area
needed to contain the base of the simulation and (2) the maximum distance the base gets
from the origin, over the simulation duration.

Vrect = (max (x1,base(t))−min (x1,base(t)))× (max (x3,base(t))−min (x3,base(t))) (6.2)
VmaxDist = max ||xbase(t)|| (6.3)

• ‘Uprightness’ of the beam

33



The ‘uprightness’ of the beam is measured as the space-averaged Euler angle. Its normalised
by π such that uprightness is defined between [0, 1]

Vuprightness(t) =
1

L

∫ L

0

1− θ(s, t)

π
ds (6.4)

θ(s, t) = 2 arccos(Φξ0S(s)ξ(t)) (6.5)

where Φξ0 = [1, 0, 0, 0] selects the first component of the quaternion. In the tables the final
uprightness is reported.

• Time to upright

Vt, up is defined as the time it takes for the uprightness (as above) to be greater than 0.90
for all future time.

• Simulation time

A relative measure of time for computation is assessed, normalised by the first simulation.
Since the first time step in the MPC usually takes much longer than the rest, the first (Vt, sim1)
and the average of the remaining iterations (Vt, simAvg) is provided.

The full set of simulations and figures of merits is listed in the appendix. The relevant simulations
will be highlighted in the next sections.

6.2 Orientation based controller is able to orient the flexible
pendulum

Figure 6.1 demonstrates the performance of a controller using only the orientation based cost
function. We can see the controller is able to make the pendulum upright in a short (∼ 0.5 sec-
onds) period of time (Figs a, c). The controller pushes the beam (in the global frame) to the
right and then brings the base down thus inverting the pendulum. Intuitively this resembles the
behaviour a human might execute, if they did not have any torque control at the base, as is in our
simulations.

Fig b shows the control history required to execute this manoeuvre. 1 We can see large, rapidly
changing changes in the control history at each timestep. These perturbations continue after the
magnitude of the control forces has reduced for t > 1.5 seconds. The initial vibrations are necessary
to explain the behaviour near the origin. The base starts moving to the left, which causes the tip
to curl backwards (snapshots 1-3 of Fig a). However soon after, the tip accelerates further to the
left than the base, and allows the bar to swing up anti-clockwise. This can only be explained by
the base slowing down (in the e3 direction) and moving downwards, increasing the curvature in
the beam (snapshots 4-6). This is the sign change in u3 seen at t = 0.3 (Fig b).

Inspecting the states at t > 1.5 seconds, it seems that they represent little pressure waves along the
beam’s elastic axis. Tightening the simulation tolerances reduced this slightly, but the high fre-
quency oscillations were not suppressed. The reason for these waves warrants further investigation.
My initial hypothesis is that the controller may be exploiting a known stabilising method for rigid
linked pendulums: by vibrating the pivot point at a sufficiently large frequency and amplitude, a
multi-pendulum with finite number of sections can be stabilised about the inverted position2 [20].
This theory’s extension to flexible beams has not yet been established.

Fig c shows the scalar component of the quaternions at three tracked locations along the beam.
While the shape and timescales are similar to the expected results from Section 3.4, later results
will show that the the timescales do not match that of the analytic results. This makes sense, as
the controller does not reach a situation where ξv ≈ −ω/c for ∼ 1 seconds (Fig d) by which time
the pendulum is already upright. The norm of the errors (Fig d) shows that even though the error
at the tip and mid sections is almost twice that of the error at the base, they converge to their
final values in the same amount of time.

1As these represent the forces in the local frame of reference of the base, they do not visually correspond to the
movement of the base in Fig a.

2Video summary by Mould, 2014: https://www.youtube.com/watch?v=gnn21smGVrQ

34

https://www.youtube.com/watch?v=gnn21smGVrQ


-1 0 1

e
3
*  [m]

-8

-7

-6

-5

-4

-3

-2

-1

0

e
1*
 [
m

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time, s

-10

-5

0

5

10

u
 -

 u
re

f [
N

]

u
1

u
3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

0

0.2

0.4

0.6

0.8

1

0

 base

 mid

 tip

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

0

0.5

1

1.5

2

2.5

||
v
 +

 
/c

||

base

mid

tip

a b

c

d

Figure 6.1: Performance of orientation based controller. (a) Visualisation of base path (crosses)
and beam shape (lines) over first 2 seconds. Pendulum starts in the down position (red) at the
origin, and tends to a constant velocity (blue). Each snapshot represents 20 ms. (b) Control
history for this simulation. uref = [g0, 0, 0]T represents the input force to counter gravity when in
an upright configuration. (c) Evolution of the scalar component of the tracked quaternions. The
beam is upright in about 0.5 seconds. (d) Error in the objective function at each of the three
tracked locations. Parameters: Q = Qorientation, c = 10. (Simulation 9)

35



Finally, we can see that the pendulum converges into a state where it has a non-zero velocity to
the lower left. This is reasonable as the controller has no penalty on the linear velocity states.
Furthermore, we can observe the control input (Fig b) and the norm of the quaternion error (Fig
d) are non-zero 5 seconds into the simulation. These have two causes: (1) since the velocity and
q2 states are not penalised by this controller, the total energy in the beam is constantly oscillating
between linear kinetic energy, strain energy and rotational kinetic energy, but the controller only
seeks to suppress the rotational kinetic energy. (2) numerical artefacts from the integration schemes
used.

These limitations are addressed by the hybrid controllers, presented next.

6.3 Hybrid Controller Performance

-4 -2 0 2 4
-3

-2

-1

0

1

e
1*
 [
m

]

0 2 4 6 8
-10

-5

0

5

10

0 0.5 1 1.5 2 2.5 3

0

0.5

1

-4 -2 0 2 4
-3

-2

-1

0

1

e
1*
 [
m

]

0 2 4 6 8
-10

-5

0

5

10

0 0.5 1 1.5 2 2.5 3

0

0.5

1

-4 -2 0 2 4
-3

-2

-1

0

1

e
1*
 [
m

]

0 2 4 6 8
-10

-5

0

5

10

0 0.5 1 1.5 2 2.5 3

0

0.5

1

-4 -2 0 2 4

e
3
*  [m]

-3

-2

-1

0

1

e
1*
 [
m

]

0 2 4 6 8

Time, s

-10

-5

0

5

10
u

1

u
3

0 0.5 1 1.5 2 2.5 3

Time [s]

0

0.5

1

Q
o

ri
Q

st
a

b
0

.1
Q

st
a

b
 +

 Q
o

ri
0

.0
1

 Q
st

a
b
 +

 Q
o

ri

u - u
ref

 [N] ξ
0
 (Tip)Path

a b c

d e f

g h i

j k l

Figure 6.2: Performance of hybrid controllers. Each row represents results from increasing fraction
of Qstabilising compared to Qorientation. (a, d, g, j) The first column shows the path of the base and
the beam shapes. Beam shapes are shown as snapshots, from the start (red) to the end (blue) in
increments of 20 ms. For clarity, only the first and last 0.5 seconds are shown. (b,e,h,k) The second
column shows the control history. (c,f,i,l) The third column shows the tip quaternion history.

Table 6.1: Comparison of hybrid controller performance. fs and fo denote the relative weights
of the stabilising and orientating controllers (Equation (5.16)). Full table of parameters is in the
appendix.

Sim Index fs fo Vu Vuprightness Vt, upright Vrectangle VmaxDist Vt, sim1 Vt, sim avg

9 0 1 1.47 1.00 0.60 - - 433.1 3.3
12 0.01 1 1.32 0.97 0.59 7.56 3.34 310.0 6.7
11 0.1 1 1.75 0.96 0.58 2.43 2.63 168.8 10.1
10 1 0 2.09 0.92 1.99 1.66 2.18 503.6 5.0

36



Hybrid controllers allow the algorithm to simultaneously achieve two desirable behaviours - quick
and efficient uprighting, and the ability to bring the beam towards the origin with damped velocity
and strain modes. Figure 6.2 shows the behaviour of the controllers as the relative importance of
Qorientation and Qstabilising are changed, going down the figure. Across each row, we see snapshots
showing the initial behaviour of the controller and the final resting condition after 10 seconds (figs
a, d, g, j). By introducing even a small amount of Qstabilising we can see the final state of the
beam is upright and only 2.5 meters away from the origin (fig d). This position is not at the origin,
as there is a local minima for the optimiser, where it prefers to remain a distance away from the
origin and not induce the velocity costs of trying to move to the origin. These offsets could easily
be removed by introducing an integral error term as in PID controllers.

With greater weight on Qstabilising the behaviour of the controller shifts - an oscillating controller
is seen. Such a controller is able to navigate the beam towards the origin while only roughly
maintaining the uprightness of the beam. As it approaches the origin, the controller attempts to
straighten the beam, but is struggles to do so easily (vibrations in ξ0 are visible after the initial
0.5 seconds until about 3 seconds, fig l). 3

Table 6.1 lists the relevant figures of merit. We can see that the final uprightness decreases as
more Qstabilising is introduced. Furthermore, the overall time to upright is significantly greater for
the controller with just the stabilising cost.

6.4 Choice of c

Table 6.2: Impact of controller strength on response. each row shows a simulation with a changing
controller strength c. Uses fo = 1, fs = 0.1. Full table of parameters is in the appendix.

Sim Index c Vu Vuprightness Vt, upright Vrectangle VmaxDist Vt, sim1 Vt, sim avg

15 0.1 2.95 0.96 1.13 36.05 8.49 812.96 12.08
13 1 2.91 0.96 1.12 35.05 8.36 1050.37 13.32
18

√
6g0 1.56 0.97 0.64 9.78 3.36 224.46 8.24

12 10 1.32 0.97 0.59 7.56 3.34 309.96 6.75
14 30 1.98 0.97 0.39 5.25 3.65 1043.37 8.66

The controllers are all able to make swing the pendulum to an upright position, to a similar
uprightness measure Vuprightness. As we increase the controller strength, we can see the time
required to reach the upright state is decreasing, but is not decreasing as 1/c as predicted by the
analytic calculations Equation (3.26). This is expression would be only be true if the state satisfied
ξv = −ω/c in a timespan much shorter than the timescales of the dynamics, as mentioned earlier.
Furthermore, for small c cases, the controller is capped out at the maximum control inputs. For
very large c, we can see very high frequency changes in the force input, and demonstrates that if
c is too large, numerical issues become apparent and simulations with much finer timesteps are
likely required to resolve the behaviour.

For the range of simulations performed, controller strengths of c =
√

6g0 and c = 10 provided
similarly high-performing results on controller effort and simulation time. This parallels the rigid
pendulum case where c =

√
6g0 was shown to use the open-loop dynamics of the pendulum to its

advantage. Since the flexible pendulum has the same mass properties as the rigid pendulum, a
similar controller strength can be expected to show good results. The computation times for these
simulations was also the shortest (by at least a factor of 2) which suggests that the optimiser did
not have to re-optimise the trajectory multiple times during each iteration of the MPC.

It is also interesting that the control effort Vu is lowest for these two simulations. Further inves-
tigation would be needed to understand if this minima holds if more simulations are performed,
and if other the parameters (R, umax, tp, etc) are also varied.

3The summary images in the appendix may be useful to verify this.

37



e 1*  
[m

]

e3
* [m]

-4 40

e3
* [m]

-4 40

e3
* [m]

-4 40

e3
* [m]

-4 40

e3
* [m]

-4 40

5

-10

-5

0

c = 0.1 c = 1 c=sqrt(6g
0
) c=10 c=30

u
-u

re
f 
[N

]

-10

10

0

-10

10

0

-10

10

0

-10

10

0

-10

10

0

Time [s]

0 2 4 6 8

c = 0.1

c = 1

c=sqrt(6g
0
)

c=10

c=30

ξ 0
 (

T
ip

)

0

1

0

1

0

1

0

1

0

1

Time [s]

0 1 2 3

c = 0.1

c = 1

c=sqrt(6g
0
)

c=10

c=30

a b c d e

f

g

h

i

j

k

l

m

n

o

Figure 6.3: Impact of changing the controller strength c. (a-e) show the beam path and snapshots
of the beam. The colour indicates time, starting at red and ending at blue. Each snapshot shows
20 ms. (f-j) show the required control history and (k-o) show the tip quaternion’s scalar component
against time. fo = 1, fs = 0.1 for these simulations.

38



Chapter 7

Conclusion

7.1 Contributions
In conclusion, this work uses an insight into rotational dynamics to define a controller that implicitly
can rotate a body to a known state. The controller’s behaviour is firs investigated in the rigid
body case as a motivator, demonstrating that this single control scheme can behave like an energy
shaping method far from the inverted state, but also reduces to the stabilising LQR solution near
the inverted state.

Applying this to a flexible beam, this work presents for the first time, the full swing up control of
a very flexible pendulum using a geometrically exact description of the beam.

7.2 Future Work
In this work, the impact of controller strength and the hybrid cost functions was the focus. As noted
in the above sections, there still remain many open questions on the performance and behaviour
of these controllers. Of particular importance I believe, are

1. impact of introducing a large controller input penalty (R),

2. behaviour of a hybrid cost function that primarily penalises the location of the base rather
than using Qstabilising1

3. a more detailed study of the implications of choosing/shaping the controller strength c,
including time, state or spatial location dependence,

4. impact of different levels of beam compliance, or mass distribution

5. the controller’s robustness to modelling errors and disturbances introduced during the sim-
ulation

6. the extension of this problem to match a target orientation of the tip (instead of simply being
upright), and therefore allowing end-effector control in soft robotic manipulators.

1This was briefly explored. While the base location is easily penalised under the current formulation, it was
extremely important to balance the relative weight of the penalties - if the penalty is too small, the controller
establishes local minima where the beam is upright but far from the origin, and if the penalty is too large, the
optimiser often fails to find a solution. The simulation times were also much greater than the other simulations,
and therefore more work is needed to understand if this is a suitable approach.

39



Appendix A

Code: Rigid Pendulum Optimal
Control

The rigid pendulum optimal control problem was solved using OpenGoddard which implements a
Legendre-Psuedospectral scheme. It was chosen for its simple Python interface. The code is listed
below.

import numpy as np
from OpenGoddard.optimize import Problem , Guess , Condition , Dynamics

class Beam:
"""
Defines a simple rigid beam of uniform mass distribution.
"""
def __init__(self):

self.mu = 1 # mass per unit length
self.L = 1
self.M = self.mu*self.L
self.g = 9.81
self.I = self.mu * self.L **3 / 3
self.copt = np.sqrt(6*self.g)

def dynamics(prob , obj , section):
th = prob.states(0, section)
thd = prob.states(1, section)
F1 = prob.controls(0,section)

dx = Dynamics(prob , section)
dx[0] = thd
dx[1] = (obj.M * obj.g * obj.L * np.sin(th) / 2 + F1) / obj.I

return dx()

def equality(prob , obj):
th = prob.states_all_section(0)
thd = prob.states_all_section(1)

result = Condition ()

# initial conditions
result.equal(th[0], np.pi)
result.equal(thd[0], 0)

# final conditions
# (only used for the minumum torque case)
# result.equal(th[-1], 0.0)
# result.equal(thd[-1], 0.0)

return result ()

def inequality(prob , obj):

40



tf = prob.time_final(-1)

result=Condition ()

# lower bounds
result.lower_bound(tf, 2)
result.upper_bound(tf, 10)

return result ()

def cost(prob , obj):
return 0.0

def running_cost(prob , obj):

th = prob.states_all_section(0)
thd = prob.states_all_section(1)
F1 = prob.controls_all_section(0)

c = obj.copt

return (np.sin(th/2) + thd/c) **2 + 1e-6*F1 **2

def display_func ():
tf = prob.time_final(-1)
print(f"tf: {tf:.5f}")
return

### define problem parameters
time_init = [0.0, 4.0]
n = [100]
num_states = [2]
num_controls = [1]
max_iteration = 80

prob = Problem(time_init , n, num_states , num_controls , max_iteration)
obj = Beam()

prob.dynamics = [dynamics]
prob.knot_states_smooth = []
prob.cost = cost
prob.running_cost = running_cost
prob.equality = equality
prob.inequality = inequality

# define initial guess
zeroGuess = Guess.linear(prob.time_all_section , 0,0)
thGuess = Guess.linear(prob.time_all_section ,np.pi , 0)
prob.set_states_all_section(0, thGuess)
prob.set_states_all_section(1, zeroGuess)

## solve the optimal control problem
prob.solve(obj , display_func , ftol=1e-8)

## save the solution
th = prob.states_all_section(0)
thd = prob.states_all_section(1)
F1 = prob.controls_all_section(0)
time = prob.time_update ()

np.savez(’output ’, th=th,thd=thd ,F1=F1 ,t=time)

41



Appendix B

Full Simulation Results

42



Table B.1: Summary of simulation results

Sim Index c fs fo Modified Qo? Tolerance Vu Vuprightness Vt,upright Vrectangle VmaxDist Vt, sim1 Vt, sim avg

5 10 0 1 True 0.01 1.08 0.947 0.61 17.22 4.14 55.79 1.66
9 10 0 1 True 0.001 1.47 0.998 0.60 645.69 44.14 433.13 3.30
15 0.1 0.01 1 True 0.001 2.95 0.962 1.13 36.05 8.49 812.96 12.08
13 1 0.01 1 True 0.001 2.91 0.962 1.12 35.05 8.36 1050.37 13.32
16 1 0.01 1 False 0.001 1.56 0.951 0.45 6.11 2.43 202.78 2.83
18 7.672 0.01 1 True 0.001 1.56 0.970 0.64 9.78 3.36 224.46 8.24
1 10 0.01 1 True 0.01 1.12 0.943 0.59 14.89 3.82 87.93 1.66
12 10 0.01 1 True 0.001 1.32 0.968 0.59 7.56 3.34 309.96 6.75
17 10 0.01 1 False 0.001 1.47 0.935 0.42 3.06 2.67 118.31 3.21
14 30 0.01 1 True 0.001 1.98 0.972 0.39 5.25 3.65 1043.37 8.66
2 10 0.1 1 True 0.01 1.48 0.961 0.57 4.26 2.71 125.72 1.86
11 10 0.1 1 True 0.001 1.75 0.958 0.58 2.43 2.63 168.83 10.05
3 10 1 1 True 0.01 1.80 0.942 0.46 1.76 2.27 143.40 2.13
6 10 1 0 True 0.01 1.90 0.920 0.37 1.67 2.19 144.71 1.97
10 10 1 0 True 0.001 2.09 0.919 1.99 1.66 2.18 503.61 4.97
4 10 10 1 True 0.01 1.97 0.937 0.45 1.75 2.20 508.91 3.00

43



-2 -1 0 1

e
3
 [m]

-3

-2

-1

0

1

2
e

1
 [

m
]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-3

-2

-1

0

1

2

3

0 5 10

Time [s]

22

24

26

28

30

32

Q
u

a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.1: Summary Image for Simulation 1

0 0.5 1 1.5

e
3
 [m]

-2.5

-2

-1.5

-1

-0.5

0

e
1
 [
m

]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-3

-2

-1

0

1

2

3

0 5 10

Time [s]

22

24

26

28

30

32

Q
u
a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.2: Summary Image for Simulation 2

0 0.5 1 1.5

e
3
 [m]

-2

-1.5

-1

-0.5

0

0.5

e
1
 [
m

]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-3

-2

-1

0

1

2

3

0 5 10

Time [s]

22

24

26

28

30

32

Q
u
a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.3: Summary Image for Simulation 3

44



0 0.5 1 1.5

e
3
 [m]

-2

-1.5

-1

-0.5

0

0.5

1

e
1
 [
m

]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-3

-2

-1

0

1

2

3

0 5 10

Time [s]

22

24

26

28

30

32

Q
u
a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.4: Summary Image for Simulation 4

-2 -1 0 1

e
3
 [m]

-3

-2

-1

0

1

e
1
 [
m

]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-3

-2

-1

0

1

2

3

0 5 10

Time [s]

22

24

26

28

30

32

Q
u
a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.5: Summary Image for Simulation 5

0 0.5 1 1.5

e
3
 [m]

-2

-1.5

-1

-0.5

0

0.5

e
1
 [

m
]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-3

-2

-1

0

1

2

3

0 5 10

Time [s]

22

24

26

28

30

32

Q
u

a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.6: Summary Image for Simulation 6

-10 -5 0

e
3
 [m]

-40

-30

-20

-10

0

e
1
 [

m
]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-5

0

5

0 5 10

Time [s]

22

24

26

28

30

32

Q
u

a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.7: Summary Image for Simulation 9

45



0 0.5 1 1.5

e
3
 [m]

-2

-1.5

-1

-0.5

0

0.5

e
1
 [

m
]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-3

-2

-1

0

1

2

3

0 5 10

Time [s]

22

24

26

28

30

32

Q
u

a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.8: Summary Image for Simulation 10

0 0.5 1 1.5

e
3
 [m]

-2.5

-2

-1.5

-1

-0.5

0

0.5

e
1
 [

m
]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-3

-2

-1

0

1

2

3

0 5 10

Time [s]

22

24

26

28

30

32

Q
u

a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.9: Summary Image for Simulation 11

-1 0 1

e
3
 [m]

-2.5

-2

-1.5

-1

-0.5

0

e
1
 [
m

]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-3

-2

-1

0

1

2

3

0 5 10

Time [s]

22

24

26

28

30

32

Q
u
a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.10: Summary Image for Simulation 12

-3 -2 -1 0 1

e
3
 [m]

-8

-6

-4

-2

0

e
1
 [
m

]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-6

-4

-2

0

2

4

6

0 5 10

Time [s]

22

24

26

28

30

32

Q
u
a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.11: Summary Image for Simulation 13

46



0 0.5 1 1.5

e
3
 [m]

-3

-2.5

-2

-1.5

-1

-0.5

0

e
1
 [
m

]

0 5 10

Time [s]

5

10

15

20
q
-q

re
f

-3

-2

-1

0

1

2

3

0 5 10

Time [s]

22

24

26

28

30

32

Q
u
a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.12: Summary Image for Simulation 14

-3 -2 -1 0 1

e
3
 [m]

-8

-6

-4

-2

0

e
1
 [
m

]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-6

-4

-2

0

2

4

6

0 5 10

Time [s]

22

24

26

28

30

32

Q
u
a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.13: Summary Image for Simulation 15

0 0.5 1 1.5

e
3
 [m]

-2

-1.5

-1

-0.5

0

0.5

e
1
 [
m

]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-3

-2

-1

0

1

2

3

0 5 10

Time [s]

22

24

26

28

30

32

Q
u
a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.14: Summary Image for Simulation 16

-0.5 0 0.5 1 1.5

e
3
 [m]

-2

-1

0

1

e
1
 [
m

]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-3

-2

-1

0

1

2

3

0 5 10

Time [s]

22

24

26

28

30

32

Q
u
a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.15: Summary Image for Simulation 17

47



-2 -1 0 1

e
3
 [m]

-3

-2

-1

0

e
1
 [
m

]

0 5 10

Time [s]

5

10

15

20

q
-q

re
f

-3

-2

-1

0

1

2

3

0 5 10

Time [s]

22

24

26

28

30

32

Q
u
a
te

rn
io

n

0

0.2

0.4

0.6

0.8

1

0 5 10

Time [s]

-10

-5

0

5

10

u
-u

re
f [

N
]

u
1

u
3

Figure B.16: Summary Image for Simulation 18

48



Appendix C

Catmull-Rom Interpolation for
quaternions

The derivation of the Catmull Rom interpolation extends https://qroph.github.io/2018/07/
30/smooth-paths-using-catmull-rom-splines.html and https://en.wikipedia.org/wiki/
Cubic_Hermite_spline#Interpolation_on_the_unit_interval_with_matched_derivatives_at_
endpoints

Any polynomial spline (parameterised by t) through a set of M N -dimensional points can be
written as

pj(t) = wi(t)pij (C.1)

using Einstein notation for i = 0, 1, ...M and j = 0, 1, 2...N

A Catmull-Rom interpolation uses a cubic spline, with matched points and derivatives at each
control point. Therefore we can write the spline between any two points p1, p2 as a weighted sum
with the neighbouring points,

p(t) = a(t)p0 + b(t)p1 + c(t)p2 + d(t)p3 (C.2)

for t ∈ [0, 1] where we need

p(0) = p1 (C.3)
p(1) = p1 (C.4)

m(0) =
p2 − p0

2
(C.5)

m(1) =
p3 − p1

2
(C.6)

where m represents the derivative at the central knot points.

Solving for the coefficients a, b, c, d we can write

p(t) =
[
1 t t2 t3

] 
0 1 0 0
−s 0 s 0
2s s− 3 3− 2s −s
−s 2− s s− 2 s



p0
p1
p2
p3

 (C.7)

49

https://qroph.github.io/2018/07/30/smooth-paths-using-catmull-rom-splines.html
https://qroph.github.io/2018/07/30/smooth-paths-using-catmull-rom-splines.html
https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Interpolation_on_the_unit_interval_with_matched_derivatives_at_endpoints
https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Interpolation_on_the_unit_interval_with_matched_derivatives_at_endpoints
https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Interpolation_on_the_unit_interval_with_matched_derivatives_at_endpoints


For a centripetal Catmull Rom, we use s = 1/2, therefore

p(t) =
[
1 t t2 t3

] 
0 1 0 0
−1/2 0 1/2 0

1 −5/2 2 −1/2
−1/2 3/2 −3/2 1/2



p0
p1
p2
p3

 (C.8)

p(t) =
1

2


−t3 + 2t2 − t
3t3 − 5t2 + 2
−3t3 + 4t2 + t

t3 − t2


T 

p0
p1
p2
p3

 (C.9)

which can be easily used when all four knot points are known. However in the boundaries, the p0
or p3 are not known. These can arbitrarily be chosen, although it will change the shape of the
curve.

One possible assumption we can make is that p0 = p1 on the left boundary and p3 = p2 on the
right. This gives us a modified linear combination at the boundaries

pleft(t) = (a+ b)p1 + cp2 + dp3 (C.10)
pright(t) = ap0 + bp1 + (c+ d)p2 (C.11)

However this does not treat the boundaries well. Instead, we can define the points as p0 =
3p1 − 3p2 + p3 on the left and p3 = 3p2 − 3p1 + p0 on the right. This gives us

pleft(t) = (3a+ b)p1 + (−3a+ c)p2 + (a+ d)p3 (C.12)
pright(t) = (a+ d)p0 + (b− 3d)p1 + (c+ 3d)p2 (C.13)

Both methods seem to be rather similar, but the second one is more accurate.

The extension to multi dimensional p is straightforward. Demonstrating the 2D case,

pA(t) = a(t)pA0 + b(t)pA1 + c(t)pA2 + d(t)pA3 (C.14)
pB(t) = a(t)pB0 + b(t)pB1 + c(t)pB2 + d(t)pB3 (C.15)

where A,B represent components of each dimension of p. Therefore when we stack these together,
we get

[
pA
pB

]
(t) =

[
a 0 b 0 c 0 d 0
0 a 0 b 0 c 0 d

]


pA0

pB0

pA1

pB1

pA2

pB2

pA3

pB3


(C.16)

Therefore in general we have for a d dimensional point p,

p(t) =
[
a(t)Id b(t)Id c(t)Id d(t)Id

]︸ ︷︷ ︸
S(t)


p0
p1
p2
p3

 (C.17)

where the coefficients get modified at the edges appropriately.

50



Bibliography

[1] Thomas E Noll, John M Brown, Marla E Perez-Davis, Stephen D Ishmael, Geary C Tiffany,
and Matthew Gaier. Investigation of the Helios prototype aircraft mishap Volume I Mishap
Report. 2004.

[2] Cecilia Laschi, Barbara Mazzolai, and Matteo Cianchetti. Soft robotics: Technologies and
systems pushing the boundaries of robot abilities. Sci. Robot, 1(1):eaah3690, 2016.

[3] Fumiya Iida and Cecilia Laschi. Soft robotics: Challenges and perspectives. Procedia Computer
Science, 7:99–102, 2011.

[4] Enrico Franco and Timothy Brown. Energy shaping control for robotic needle insertion. 2019
23rd International Conference on System Theory, Control and Computing, ICSTCC 2019 -
Proceedings, pages 436–441, 2019.

[5] Vincent Duindam, Jijie Xu, Ron Alterovitz, Shankar Sastry, and Ken Goldberg. Three-
dimensional motion planning algorithms for steerable needles using inverse kinematics. The
International Journal of Robotics Research, 29(7):789–800, 2010.

[6] Russ Tedrake. Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying,
and Manipulation (Course Notes for MIT 6.832). Russ Tedrake, 12 June 2020.

[7] Mark W Spong. Swing up control of the acrobot using partial feedback linearization. IFAC
Proceedings Volumes, 27(14):833–838, 1994.

[8] Mark W Spong. Energy based control of a class of underactuated mechanical systems. IFAC
Proceedings Volumes, 29(1):2828–2832, 1996.

[9] Yue-Qing Yu, Larry L Howell, Craig Lusk, Ying Yue, and Mao-Gen He. Dynamic modeling
of compliant mechanisms based on the pseudo-rigid-body model. 2005.

[10] Santosha Kumar Dwivedy and Peter Eberhard. Dynamic analysis of flexible manipulators, a
literature review. Mechanism and machine theory, 41(7):749–777, 2006.

[11] Prasanna S Gandhi, Pablo Borja, and Romeo Ortega. Energy shaping control of an inverted
flexible pendulum fixed to a cart. Control Engineering Practice, 56:27–36, 2016.

[12] J. C. Simo. A finite strain beam formulation. The three-dimensional dynamic problem. Part
I. Computer Methods in Applied Mechanics and Engineering, 49(1):55–70, 1985.

[13] Rafael Palacios. Nonlinear normal modes in an intrinsic theory of anisotropic beams. Journal
of Sound and Vibration, 330(8):1772–1792, 2011.

[14] Marc Artola, Andrew Wynn, and Rafael Palacios. A nonlinear modal-based framework for
low computational cost optimal control of 3D very flexible structures. 2019 18th European
Control Conference, ECC 2019, pages 3836–3841, 2019.

[15] Nicola Fonzi, Steven L Brunton, and Urban Fasel. Data-driven nonlinear aeroelastic models
of morphing wings for control. arXiv preprint arXiv:2002.03139, 2020.

[16] Marc Artola, Andrew Wynn, and Rafael Palacios. Modal-Based Nonlinear Model Predictive
Control for 3D Very Flexible Structures. Under review in IEEE Transactions on Automatic
Control.

51



[17] Andrew Hanson. Visualizing quaternions. Morgan Kaufmann series in interactive 3D tech-
nology. Morgan Kaufmann, Elsevier Science, Amsterdam ; London, 2006.

[18] Takahiro Inagawa and Kazuki Sakaki. OpenGoddard. Available at https://github.com/
istellartech/OpenGoddard.

[19] Dewey H. Hodges. Erratum: Geometrically Exact, Intrinsic Theory for Dynamics of Curved
and Twisted Anisotropic Beams. AIAA Journal, 47(5):1308–1309, 2009.

[20] David Acheson. From calculus to chaos: An introduction to dynamics. Oxford University
Press on Demand, 1997.

52

https://github.com/istellartech/OpenGoddard
https://github.com/istellartech/OpenGoddard

	Introduction
	Objectives
	Contributions
	Organisation

	Background
	Energy Shaping and Psuedo-Rigid-Body Paradigm
	Modal-Based Models

	Quaternion Dynamics and a Novel Controller
	Quaternion Dynamics
	Insight
	Analytic Controller for Freely Rotating Rigid Bodies
	Swing up control of rigid pendulums
	Problem definition
	Energy Shaping
	Orientation Based Controller
	An appropriate value for the controller strength, c


	Flexible Beams
	Structural Model
	Intrinsic Beam Formulation
	Recovering displacements and rotations
	Damping

	Finite Dimensional Model Reduction
	Using only the intrinsic states
	Including a point control force
	Including the motion of the base
	Including gravitational forces


	Controller Design
	Model Predictive Control
	Design of Cost Functions
	Stabilising cost function
	Orientation cost function
	Hybrid Cost functions


	Numerical Results
	Figures of Merit, V
	Orientation based controller is able to orient the flexible pendulum
	Hybrid Controller Performance
	Choice of c

	Conclusion
	Contributions
	Future Work

	Code: Rigid Pendulum Optimal Control
	Full Simulation Results
	Catmull-Rom Interpolation for quaternions
	Bibliography

