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gatekeeper: Online Safety Verification and
Control for Nonlinear Systems in Dynamic

Environments
Devansh Ramgopal Agrawal, Ruichang Chen and Dimitra Panagou

Abstract—This paper presents the gatekeeper algorithm, a
real-time and computationally-lightweight method that ensures
that trajectories of a nonlinear system satisfy safety constraints
despite sensing limitations. gatekeeper integrates with exist-
ing path planners and feedback controllers by introducing an
additional verification step to ensure that proposed trajectories
can be executed safely, despite nonlinear dynamics subject to
bounded disturbances, input constraints and partial knowledge
of the environment. Our key contribution is that (A) we pro-
pose an algorithm to recursively construct safe trajectories by
numerically forward propagating the system over a (short) finite
horizon, and (B) we prove that tracking such a trajectory ensures
the system remains safe for all future time, i.e., beyond the finite
horizon. We demonstrate the method in a simulation of a dynamic
firefighting mission, and in physical experiments of a quadrotor
navigating in an obstacle environment that is sensed online. We
also provide comparisons against the state-of-the-art techniques
for similar problems.

Index Terms—Collision Avoidance, Motion and Path Planning,
Aerial Systems: Applications, Safety-Critical Control

Code and videos are available here: [1].

I. INTRODUCTION

Designing autonomous systems with strict guarantees of
safety is still a bottleneck to deploying such systems in the
real world. Safety is often posed as requiring the system’s
trajectories to lie within a set of allowable states, called the
safe set. In this paper, we consider the case where the safe
set is not known a priori, but is rather built on-the-fly via the
system outputs (sensor measurements). More specifically, we
consider the problem where a robot with limited sensing capa-
bilities (hence limited information about the environment) has
to move while remaining safe under some mild assumptions on
the evolution of the environment, to be stated in detail below.

Navigating within a non-convex safe set is often tackled by
path planning techniques [2]–[5]. Typically a planner generates
reference (or nominal) trajectories based on a simplified (e.g.,
linearized or kinematic) model of the system. However, the
reference trajectories may not be trackable by the actual
nonlinear system dynamics, and as a result safety constraints
may be violated. Furthermore, when trajectories are planned
over finite horizons, without recursive feasibility guarantees
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a planner may fail to find a trajectories, leading to safety
violations. This is particularly relevant and challenging when
operating in dynamic environments.

In this paper, we propose a technique to bridge path
planners (that can solve the nonconvex trajectory generation
problem) and controllers (that have robust stability guarantees)
in a way that ensures safety. gatekeeper takes inspiration
from [6] and [7], both of which also employ the idea of a
backup planner/controller. Conceptually, a backup controller
is a feedback controller that drives the system to a set of states
that are safe (referred to as the backup safe set), and keeps
the system in this set. For example, for a quadrotor navigating
in an environment with static obstacles, a backup controller
could be one that causes the quadrotor to hover in place.

In gatekeeper, the idea is that given a nominal trajectory
generated by the path planner (potentially unsafe and/or not
dynamically feasible) we construct a “committed trajectory”
using a backup controller. To do this, at each iteration of
gatekeeper, we simulate a controller that tracks the nom-
inal trajectory upto some switching time, and executes the
backup controller thereafter. The trajectory with the largest
switching time that is valid (as defined in Def 9) becomes the
committed trajectory. Thus, each committed trajectory is, by
construction, guaranteed to be defined, feasible, and safe for
all future time. The controller always tracks the last committed
trajectory, thereby ensuring safety. This paper’s key contribu-
tion is the algorithm to construct such committed trajectories,
and a proof that the proposed approach ensures the closed-
loop system remains safe. Furthermore, we explicitly account
for robustness against disturbances and state-estimation error
since naive approaches to robustification can lead to undesired
deadlock. The overall algorithm is computationally efficient
compared to similar methods, e.g. Model Predictive Control
(MPC). In our simulations VI, gatekeeper was approxi-
mately 3-10 times faster than MPC. gatekeeper’s primary
limitation is that there must exist a backup controller and set.
Some robotic systems and environments may not admit these
components. Our focus in this paper is on systems where one
can find a suitable backup controller and set, and demonstrate
how this can be employed to ensure safety.

In summary, this work has the following contributions:

• A framework to bridge path planners with tracking con-
trollers in order to convert nominal/desired trajectories
(generated by the path planner) into committed trajecto-
ries that the tracking controller can track safely.



• A formal proof that the robotic system will remain safe
for all future time under the stated assumptions.

In particular, the new contributions of this version with
respect to the conference paper [8] are:
• Theoretical: A robustification of the verification condi-

tions in [8] to also account for state estimation errors.
We have also simplified the verification conditions.

• Experimental: A demonstration of the algorithm applied
to quadrotors flying through an unknown environment,
constructing a map of the environment online, and filter-
ing human pilot commands to ensure collision avoidance.

A worked analytic example is provided in the appendix, to
help illustrate the key concepts of the paper.

Paper Organization: In section II we review a few of
the leading paradigms for safety-critical path planning and
control. In section III, we describe the key idea underpinning
gatekeeper. In sections IV, V we formally define the
problem and describe our proposed solution. Finally, in sec-
tion VI simulations and experiments are used to demonstrate
the method, and specific implementation details are discussed.

Notation: Let N = {0, 1, 2, ...}, and R,R>0,R≥0 denote
the set of reals, positive reals, and non-negative reals. Lower-
case t ∈ R is used for specific time points, while uppercase
T ∈ R is for durations. ‖·‖ refers to the vector 2-norm. Closed
balls are denoted B(r) = {x : ‖x‖ ≤ r}. For sets A,B,
A ⊂ B means x ∈ A =⇒ x ∈ B, and A 	 B, A ⊕ B are
the Pontryagin set difference and the Minkowski sum of sets
A,B. A function α : R≥0 → R≥0 is class K if it is continuous,
strictly increasing and α(0) = 0. β : R≥0 × R≥0 → R≥0 is a
class KL function if it is continuous, for each t ≥ 0, β(·, t) is
class K, and for each r > 0, β(r, ·) is strictly decreasing and
limt→∞ β(r, t) = 0. See also Table I.

II. RELATED WORK

A wide range of architectures and approaches have been
proposed to tackle safety-critical planning and control, es-
pecially when the environment is sensed online. A generic
perception planning and control stack is depicted in Fig. 1a.

One approach is to encode the safety constraints in the
path-planning module. In this case, the world is represented
using a grid-world, or through simplified geometric primitives
like obstacle points, or planes to depict the walls. From this
representation, a path is generated to avoid obstacles using,
for instance, grid-search techniques [9] or sampling [3]. These
paths can then be modified to avoid the obstacles, e.g. [10].
However since the path was generated without considering the
closed-loop behavior of the nonlinear dynamics of the system
and the controller, the robot may not execute the planned path
exactly. Therefore, safety may not be guaranteed.

A second approach is to encode the safety constraints at the
controller. In recent years, methods based on Control Barrier
Functions (CBFs) [11] have been developed to ensure that
a system remains within a specified safe set while tracking
a desired control input. These methods however require the
safe set to be known apriori, represented by a scalar function
h : X → R that is continuously differentiable, and satisfies
an invariance condition (see for e.g. Def. 2 of [11]). For

certain classes of systems and safe sets, constructive methods
exist to design h, but these do not handle time-varying or
multiple safety conditions well [12]–[16]. For specific system
models, it is sometimes possible to construct suitable plan-
ners and controllers, e.g. [17], [18]. Alternatively, offline and
computationally expensive methods based on Hamilton-Jacobi
reachability (e.g. [11], [18]–[22]) or learning-based (e.g. [23]–
[27]) can be used. However, when the environment is sensed
online (and therefore the safe set is constructed online), the
assumptions of a CBF might be difficult to verify. If unverified,
these controllers could fail to maintain safety.

The third common approach is to encode safety constraints
jointly between the controller and the path planner. For ex-
ample, MPC plans trajectories considering the dynamics of
the robotic system, and also determines a control input to
track the trajectory. Various versions of this basic concept
exist, e.g. [6], [28]–[30]. However, given the nonlinearity of
the robot dynamics and the nonconvexity of the environment,
guaranteeing convergence, stability or recursive feasibility is
challenging. To handle the interaction between path planners
and controllers, multirate controllers [16], [29] have also been
proposed. These methods exploit the differential flatness of
the system to provide theoretical guarantees, although the
resulting mixed-integer problem can be expensive for clut-
ter/complicated environments. In general, these methods solve
the path planning problem and the control problem separately,
but impose additional constraints on each to guarantee that the
robot will remain safe. This assumes a structure in the path
planner and the controller, limiting the applicability.

There is also a growing literature on end-to-end learning
based methods for safe perception, planning, and control. See
for e.g., [31], [32] and references within. These methods can
perform well in scenarios that they have been trained on,
but do not provide guarantees of performance or safety in
scenarios beyond which they have been trained.

The idea of backup planners/controllers has been introduced
recently to address some of the above challenges. In [6], a
backup trajectory is constructed using a linear model to ensure
the trajectory lies within the known safe set at all times.
However, since the backup trajectory was generated using
simplified dynamics, the nonlinear system may not be able
to execute this trajectory, possibly causing safety violations.
A similar approach is proposed in [33] for mobile robots with
the ability to stop. In [7], safety is guaranteed by blending
the nominal and backup control inputs. The mixing fraction
is determined by numerically forward propagating the backup
controller. However, due to the mixing, the nominal trajectory
is never followed exactly, even when it is safe to do so. By
combining elements from these methods in a novel manner,
gatekeeper addresses the respective limitations, without
requiring the path planner and controller to be co-designed.

III. MOTIVATING EXAMPLE AND METHOD
OVERVIEW

We present an example to illustrate the key concepts in
this paper, and challenges when dealing with dynamic en-
vironments and limited sensing. A common wildfire fire-
fighting mission is the “firewatch” mission, where a helicopter
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Fig. 1. Block Diagram describing the gatekeeper algorithm. (a) shows that gatekeeper is an additional module that fits within the common perception-
planning-control stack of a robotic system. (b) is a pictorial representation of Algorithm 1.

is deployed to trace the fire-front, the outer perimeter of
the wildfire. The recorded GPS trace is then used to create
a map of the wildfire, which is then used to efficiently
deploy appropriate resources. Today, the helicopters used in
the firewatch mission are human-piloted, but in this example,
we design an autonomous controller for a UAV to trace the
fire-front without entering or being surrounded by the fire.
Fig. 2 depicts the notation used in this paper.

The fire is constantly evolving, and expanding outwards.
Thus the safe set, the set of states located outside the fire,
is a time-varying set denoted S(t). Since the rate of spread
of fire is different at each location, (it depends on various
environmental factors like slope, vegetation and wind [34],
[35]), the evolution of the safe set S(t) is unknown. That
said, it is often possible to bound the evolution of S(t). In
this example, we assume the maximum fire spread rate is
known. To operate in this dynamic environment, the UAV
makes measurements, for example thermal images that detect
the fire-front. However, due to a limited field-of-view, only a
part of the safe set can be measured.

The challenge, therefore, is to design a controller for the
nonlinear system that uses the on-the-fly measurements to
meet mission objectives, while ensuring the system state x(t)
remains within the safe set at all times, i.e.,

x(t) ∈ S(t), ∀t ≥ t0. (1)

Since S is unknown, verifying (1) directly is not possible.
We ask a related question: given the information available upto
some time tk, does a candidate trajectory pcank (t) satisfy

pcank (t) ∈ Bk(t), ∀t ≥ tk, (2)

where Bk(t) is the perceived safe set for any time t ≥ tk
constructed using the sensory information available up to tk
only. If we assume the perception system provides a reliable
estimate of a subset of the safe set, Bk(t) ⊂ S(t) ∀t ≥ tk,
then any candidate trajectory satisfying (2) will also satisfy
pcank (t) ∈ S(t). However, since the check in (2) needs to be
performed over an infinite horizon t ≥ tk, it still cannot be
implemented. A key contribution of this paper is to show how
we can perform this check by verifying only a finite horizon.

We propose the following: at each iteration, we construct
a candidate trajectory and check whether the candidate satis-
fies (2). If so, the candidate trajectory becomes a committed
trajectory. The controller always tracks the last committed
trajectory, thus ensuring safety. In other words, the candidate
trajectory is valid if it is safe over a finite horizon and reaches
a backup set by the end of the horizon. The controller tracks
the last valid trajectory (i.e., the committed trajectory), until a
new valid trajectory is found.

Referring back to the firewatch mission, if the UAV is able
to fly faster than the maximum spread rate of the fire, a safe
course of action could be to simply fly perpendicular to the
firefront, i.e., radially from the fire faster than the maximum
fire spread rate. This is an example of a backup controller,
since it encodes the idea that if the system state reaches a
backup set Ck(tkB) at some time tkB ≥ tk, then the backup
controller πk

B will ensure that x(t) ∈ Ck(t) for all t ≥ tkB .
Note, the notation Ck(t) highlights that the backup set could
be a time-varying set. This switching time t = tk +Ts will be
maximized by gatekeeper since it is off-nominal behavior.

In the firewatch mission, πk
B is controller to make the UAV

fly perpendicular to the firefront, and Ck(t) is the set of states
that are “sufficiently far from fire, with a sufficiently high
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speed perpendicular to the fire.” A worked example with exact
expressions for S(t),Bk(t), Ck(t) is provided in the appendix.
Since the fire is constantly expanding, the Ck(t) set is also
time-varying: the set of safe states needs to be moving radially
outwards. Furthermore, at each k, the backup controller and
set can be a different, so we index these by k too.

Using backup controllers, we can find a sufficient condition
for (2) that only requires finite horizon trajectories:{

pcank (t) ∈ Bk(t) if t ∈ [tk, tkB)

pcank (tkB) ∈ Ck(tkB)
(3)

=⇒

{
pcank (t) ∈ S(t) if t ∈ [tk, tkB)

pcank (t) ∈ S(t) if t ∈ [tkB ,∞)
(4)

⇐⇒ pcank (t) ∈ S(t) ∀t ≥ tk (5)

for any tkB ≥ tk, provided (I) Bk(t) ⊂ S(t), (II) Ck(t) ⊂
S(t) ∀t ≥ tkB , and (III) for t ≥ tkB the control input
to the candidate trajectory is πk

B . These conditions can be
verified easily: (I) is the assumption that the perception system
correctly identifies a subset of the safe set, (II) is the defining
property of a backup set, and (III) will be true based on how
we construct the candidate trajectory.

Notice that in (3), we only need to verify the candidate
trajectory over a finite interval [tk, tkB ], but this is sufficient
to proving that the candidate is safe for all t ≥ tk.

In the following sections, we formalize the gatekeeper
as a method to construct safe trajectories that balance between
satisfying mission objectives and ensuring safety.

IV. PROBLEM FORMULATION

We consider two types of systems: (A) a nominal system,
with perfect state information and without disturbances, and
(B) a perturbed estimate-feedback system, where there are

Table I. Notation

Symbol Definition

Time Points:
tk Start time of iteration k
tkS Switch time tkS = tk + TS
tkB Forecast time tkB = tkS + TB

Sets:
X ⊂ Rn State space
U ⊂ Rm Control input space
S(t) ⊂ X Safe set at time t
Bk(t) ⊂ X Perceived safe set at time t based on measure-

ments upto time tk ≤ t
Ck(t) ⊂ X k-th controlled-invariant set

Controllers:
πT Trajectory tracking controller, πT : X ×X → U
πB Backup controller, πB : R×X → U

Trajectories:
pnomk k-th nominal trajectory
pcank k-th candidate trajectory
pcomk k-th committed trajectory

bounded disturbances on both the system dynamics and the
measurements, and an observer estimates the state.

A. Nominal System Description
Consider a nonlinear system,

ẋ = f(x, u) (6)

where x ∈ X ⊂ Rn is the state and u ∈ U ⊂ Rm is the
control input. f : X × U → Rn is assumed locally Lipschitz.

Given a control policy π : [t0,∞) × X → U and an
initial condition x(t0) = x0 ∈ X , the initial-value problem
describing the (nominal) closed-loop system is:

ẋ = f(x, π(t, x)), x(t0) = x0. (7)

When π is piecewise continuous in t and Lipschitz wrt x, there
exists an interval over which the solutions of (7) exist and are
unique [36, Thm 3.1]. We assume this interval is [t0,∞).

B. Perturbed System Description
Now consider a perturbed system without perfect state

information. The perturbed system dynamics are

ẋ = f(x, u) + d(t), (8a)
y = c(x) + v(t), (8b)

where y ∈ Rp is the sensory output, and c : X → Rp is locally
Lipschitz continuous. The additive disturbances d : [t0,∞)→
Rn and v : [t0,∞)→ Rp are bounded, supt≥t0 ‖d(t)‖ = d̄ <
∞, supt≥t0 ‖v(t)‖ = v̄ <∞.

An observer-controller uses a state estimate x̂ ∈ X to
compute the control input, and takes the form

˙̂x = q(x̂, y, u) (9a)
u = π(t, x̂) (9b)



where q : X × Rp × U → Rn is locally Lipschitz in all
arguments. The estimate-feedback controller π : R≥0×X → U
is assumed piecewise-continuous in t and Lipschitz in x̂.

In this case, the closed-loop system dynamics are:

˙̂x = q(x̂, y, π(t, x̂)), x̂(t0) = x̂0, (10a)
ẋ = f(x, π(t, x̂)) + d(t), x(t0) = x0 (10b)
y = c(x) + v(t) (10c)

We assume that for each initial (x0, x̂0) and disturbance
signals d, v, a unique solution exists for all t ∈ [t0,∞).

C. Set Invariance

Our method is based on concepts in set invariance.

Definition 1 (Controlled-Invariant Set). For the nominal sys-
tem (6), a controller π : [t0,∞) × X → U renders a set
C(t) ⊂ X controlled-invariant on t0 if, for the closed-loop
system (7) and any τ ≥ t0,

x(τ) ∈ C(τ) =⇒ x(t) ∈ C(t), ∀t ≥ τ. (11)

The concept of controlled invariance can be extended to the
case with disturbances and an observer-controller [37].

Definition 2 (Robustly Controlled-Invariant Set). For the
perturbed system (8), an observer-controller (9) renders a
set C(t) ⊂ X robustly controlled-invariant on t0 if, for the
closed-loop system (10) and any bounded disturbance d, v with
supt≥t0 ‖d(t)‖ ≤ d̄, supt≥t0 ‖v(t)‖ ≤ v̄, for any τ ≥ t0,

x(τ) ∈ C(τ), ‖x̂(τ)− x(τ)‖ ≤ δ =⇒ x(t) ∈ C(t), ∀t ≥ τ.
(12)

for some δ > 0.

Usually, the objective is to the find the largest controlled-
invariant set C(t) for a given safe set S(t), referred to as the
viability kernel [21], [38], [39]. However, these methods are
difficult to apply when the safe set S(t) is unknown apriori,
and instead is estimated online. The objective and approach
of this paper is different, as described below.

D. Assumptions

Here, we formally state the assumptions that will be used to
prove that gatekeeper renders a system safe. We assume
the following modules are available, and explain the technical
assumptions of each in the following paragraphs.

1) a perception system that can sense the environment, and
can estimate the safe set,

2) a nominal planner that generates desired trajectories
to satisfy mission requirements (for example reaching
a goal state, or exploring a region), potentially using
simplified dynamic models,

3) an input-to-state stable tracking observer-controller that
can robustly track a specified trajectory,

4) a backup control policy that can stabilize the system to
a control invariant set.

More specifically:

1) Perception System: The (potentially time-varying) safe
set is denoted S(t) ⊂ X . We assume S(t) always has a
non-empty interior. Although the full safe set may not be
known at any given time, using sensors and a model of the
environment, there are scenarios in which it is possible to
construct reasonable bounds on the evolution of the safe set.
For example, in the firefighting scenario, an upper-bound on
the fire’s spread rate could be known. Similarly, in an envi-
ronment with dynamic obstacles, we assume that a reasonable
upper-bound on the velocity or acceleration of the dynamic
obstacles is known. As such, although we address safety in
unknown environment, we still require some assumptions on
the behavior of the environment to guarantee safety.

Specifically, we assume that the perception system provides
estimates of the safe set that are updated as new information
is acquired by the sensors. The information is available at
discrete times tk, k ∈ N. Let Bk(t) denote the perceived safe
set for time t ≥ tk constructed using sensory information upto
time tk. We assume the following:

Assumption 1. The safe set S(t) ⊂ X has a non-empty
interior for each t, and the estimated safe set Bk(t) satisfies

Bk(t) ⊂ S(t) ∀k ∈ N, t ≥ tk, (13a)
Bk(t) ⊂ Bk+1(t) ∀k ∈ N, t ≥ tk+1. (13b)

This reads as follows. In (13a), we assume that any state
perceived to be safe is indeed safe. In (13b), we assume that
the predictions are conservative, i.e., new information acquired
at tk+1 does not reclassify a state x ∈ Bk(t) (i.e. a state
perceived to be safe based on information time tk) as an unsafe
state x /∈ Bk+1(t) based on information received at tk+1.

This assumption (while stated more generally) is common
in the literature on path planning in dynamic/unknown en-
vironments [30], [40]. Depending on the application, various
methods can be used to computationally represent such sets,
including SDFs [41] or SFCs [10]. If there are perception or
predictions uncertainties, we assume they have already been
accounted for when constructing Bk(t). Some methods to
handle such errors are studied in [42] and references therein.

Note, Assumption 1 does not require that if a state x is
classified as safe at some time tk, that x is safe for all time.
Mathematically, we do not assume x ∈ Bk(t) =⇒ x ∈
Bk(τ) ∀τ ≥ t. In the appendix, diagrams and a worked
example with the firefighting mission is provided to help
clarify Assumption 1 and the definitions of S(t),Bk(t).

2) Nominal Planner: We assume that a nominal planner
enforces the mission requirements by specifying the desired
state of the robot for a short horizon TH into the future.

Definition 3 (Trajectory). A trajectory p with horizon TH
is a piecewise continuous function p : T → X defined
on T = [tk, tk + TH ] ⊂ R. A trajectory p is dynamically
feasible wrt (6) if there exists a piecewise continuous control
u : T → U s.t.

p(t) = p(tk) +

∫ t

tk

f(p(τ), u(τ))dτ, ∀t ∈ T . (14)

Denote the nominal trajectory available at the k-th iteration
by the function pnomk : [tk, tk + TH ]→ X . We do not require



pnomk to be dynamically feasible wrt (6) or (8).
Note, although some path planners (e.g. A*, RRT*) con-

struct geometric paths, we assume the output of the path
planner is a trajectory, i.e., is parameterized by time. Methods
for time allocation of geometric paths is a well studied
problem, see for e.g. [5], [6], [10].

To summarize, we assume a nominal planner is available:

Assumption 2. There exists a nominal planner that can
generate finite-horizon trajectories pnomk : [tk, tk + TH ] → X
for each k ∈ N.

3) Tracking Observer-Controller: We assume an estimate-
feedback controller πT : X ×X → U that computes a control
input u = πT (x̂, p(t)) to track a given trajectory p; we refer to
this policy as the tracking observer-controller [43]–[45]. We
assume that the tracking controller is input-to-state stable [37]:

Definition 4 (Input-to-State Stable Observer-Controller). Let
T = [tk, tl] ⊂ R≥0. A tracking observer-controller

u(t) = πT (x̂, p(t)) (15a)
˙̂x = q(x̂, y, u) (15b)

is input-to-state stable for the system (6), if, for any bounded
disturbances d : T → Rn, v : T → R, and any dynamically
feasible trajectory p : T → X , the following holds:

‖x(tk)− x̂(tk)‖ ≤ δ, and p(tk) = x̂(tk) =⇒
‖x(t)− x̂(t)‖ ≤ β(δ, t− tk) + γ(w̄), and

‖x̂(t)− p(t)‖ ≤ β(δ, t− tk) + γ(w̄), and

‖x(t)− p(t)‖ ≤ β(δ, t− tk) + γ(w̄), ∀t ∈ T , (16)

where β : R≥0 × R≥0 → R≥0 is class KL , γ : R≥0 → R≥0
is class K , and w̄ = max(supt∈T ‖d(t)‖, supt∈T ‖v(t)‖).

Note, for simplicity we assumed the same β, γ for each of
the three norms in (16), although it is not strictly necessary.

To summarize, we assume a tracking controller is known:

Assumption 3. There exists an input-to-state stable observer-
controller of the form in Def. 4, with known functions β, γ.

4) Backup Controller: In the case when a safe set S can not
be rendered controlled invariant for given system dynamics,
the objective reduces to finding a set C ⊂ S, and a controller
π : C → U that renders C controlled invariant. For example, by
linearizing (6) around a stabilizable equilibrium xe, an LQR
controller renders a (sufficiently small) set of states around
xe forward invariant [36, Thm. 4.13, 4.18]. This observation
leads to the notion of backup safety [7], [46].

Definition 5 (Backup Controller). A controller πk
B : T ×X →

U is a backup controller to a set Ck(t) ⊂ X defined for t ∈
T = [tk,∞) if, for the closed-loop system

ẋ = f(x, πk
B(t, x)), (17)

(A) there exists a neighborhood Nk(t) ⊂ X of Ck(t), s.t. Ck(t)
is reachable in fixed time TB:

x(τ) ∈ Nk(τ) =⇒ x(τ + TB) ∈ C(τ + TB), (18)

and (B) πk
B renders Ck(t) controlled-invariant:

x(τ + TB) ∈ C(τ + TB) =⇒ x(t) ∈ C(t) ∀t ≥ τ + TB .
(19)

Remark 1. The neighborhood Nk does not need to be known
in the gatekeeper framework. The definition ensures that
there exist states outside Ck that can be driven into Ck by
the backup controller within a fixed time TB . This excludes
cases, for example, where the backup trajectories approach Ck
asymptotically but never actually enter Ck.

To summarize, we assume a backup controller is known:

Assumption 4. At the k-th iteration, a set Ck(t) and a backup
controller πk

B : [tk,∞)×X → U to Ck(t) can be found where

Ck(t) ⊂ S(t), ∀t ≥ tk. (20)

Remark 2. Note that while we assume Ck(t) ⊂ S(t), we
do not assume the trajectory to reach Ck(t) is safe, nor that
the set Ck(t) is reachable from the current state x(tk) within
a finite horizon. This is in contrast to backward reachability
based methods [14], [15], [22], [47]. Instead, we will ensure
both of these conditions are satisfied through our algorithm.

Remark 3. The design of backup controllers and sets depends
on the robotic system and the environment model. For some
systems, the backup set can be designed by linearization
about a stabilizable equilibrium point (or limit cycle), and
determining the region of attraction. Other methods include
reachability analysis or learning-based approaches, e.g. [19],
[23]–[27]. Generic methods to design the backup controllers
are beyond the scope of this paper, but specific methods are
discussed in Section VI and in [7], [46].

E. Problem Statement

In summary, the problem statement is

Problem 1. Consider system (8) satisfying Assumptions 1-
4, i.e., a system with a perception system satisfying Assump-
tion 1, a nominal planner that generates desired trajectories, an
input-to-state stable tracking controller satisfying Definition 4,
and a backup controller satisfying Assumption 4. Design an
algorithm to track desired trajectories while ensuring safety,
i.e., x(t) ∈ S(t) for all t ≥ t0.

V. PROPOSED SOLUTION

gatekeeper is a module that lies between the planning
and control modules. It considers the nominal trajectories
by the planner, modifies them as needed to what we call
committed trajectories, and inputs these committed trajectories
to the trajectory-tracking controller. In this section, we will
demonstrate how to construct these committed trajectories. To
aid the reader, the analysis is first presented for the nominal
case, and later extended to the perturbed case. The various
trajectories and times are depicted in Fig. 2. The algorithm is
described in Algorithm 1 and depicted in Fig. 1.



A. Nominal Case

At the k-th iteration, k ∈ N \ {0}, let the previously
committed trajectory be pcomk−1. gatekeeper constructs a can-
didate trajectory pcan,TS

k by forward propagating a controller
that tracks pnomk over an interval [tk, tk + TS), and executes
the backup controller for t ≥ tk + TS . TS ∈ R≥0 is a
switching duration maximized by gatekeeper as described
later. Formally,

Definition 6 (Candidate Trajectory). Suppose at t = tk,
• the state is x(tk) = xk,
• the nominal trajectory is pnomk : [tk, tk + TH ]→ X ,
• πT is a trajectory tracking controller,
• πk

B is a backup controller to the set Ck(t).
Given a TS ∈ [0, TH ], the candidate trajectory pcan,TS

k :
[tk,∞)→ X is the solution to the initial value problem

ṗ = f(p, u(t)), (21a)
p(tk) = xk, (21b)

u(t) =

{
πT (p(t), pnomk (t)) t ∈ [tk, tk + TS)

πk
B(t, p(t)) t ≥ tk + TS .

(21c)

By construction, the candidate is dynamically feasible
wrt (6). A candidate trajectory is valid if the following hold:

Definition 7 (Valid). A candidate trajectory pcan,Ts

k :
[tk,∞) → X defined by (21) is valid if the trajectory is safe
wrt the estimated safe set over a finite interval:

pcan,TS

k (t) ∈ Bk(t), ∀t ∈ [tk, tk,B ], (22)

and the trajectory reaches Ck(t) at the end of the horizon:

pcan,TS

k (tk,B) ∈ Ck(tk,B), (23)

where tk,B = tk + TS + TB .

Notice checking whether a candidate is valid only requires
the solution pcan,TS

k over the finite interval [tk, tk +TS +TB ].
This means that the candidate can be constructed by numerical
forward integration over a finite horizon.

Def. 8 defines how the k-th committed trajectory is con-
structed using the nominal trajectory pnomk , the backup con-
troller πB

k , and the previous committed trajectory pcomk−1.

Definition 8 (Committed Trajectory). At the k-th iteration,
define

Ik =
{
TS ∈ [0, TH ] : pcan,TS

k is valid
}
⊂ R, (24)

where pcan,TS

k : [tk,∞)→ X is as defined in (21), and Def. 7
is used to check validity. The committed trajectory is pcomk :
[tk,∞)→ X , defined as follows:

If Ik 6= ∅, let T ∗S = max Ik. The committed trajectory is

pcomk (t) = p
can,T∗S
k (t), t ∈ [tk,∞). (25)

If Ik = ∅, the committed trajectory is

pcomk (t) = pcomk−1(t), t ∈ [tk,∞). (26)

We are ready to prove the proposed strategy guarantees
safety. First, we show that each committed trajectory is safe.

Theorem 1. Suppose Assumptions 1-4 hold. Suppose pcan,TS

0 :
[t0,∞) → X is a candidate trajectory that is dynamically
feasible wrt (6) and valid according to Def. 7 for some TS ≥ 0.
If, for every k ∈ N, pcomk : [tk,∞) → X is determined using
Def. 8, then for all k ∈ N,

pcomk (t) ∈ S(t), ∀t ∈ [tk,∞). (27)

Proof. The proof is by induction.
Base Case: k = 0. Since pcan0 is a valid trajectory, it is

committed, i.e., pcom0 = pcan,TS

0 . Then,

pcom0 (t) ∈

{
B0(t) for t ∈ [t0, t0,B)

C0(t) for t = t0,B

=⇒ pcom0 (t) ∈

{
S(t) for t ∈ [t0, t0,B)

S(t) for t ≥ t0,B
⇐⇒ pcom0 (t) ∈ S(t) for t ≥ t0

where t0,B = t0 + TS + TB .
Induction Step: Suppose the claim is true for some k ∈ N.

We will show the claim is also true for k + 1. There are two
possible definitions for pcomk :

Case 1: When Ik+1 6= ∅, p
can,T∗S
k+1 is a valid candidate, i.e.,

pcomk+1(t) = p
can,T∗S
k+1 (t) ∀t ≥ t0

∈

{
Bk+1(t) for t ∈ [tk+1, tk+1,SB)

Ck+1(t) for t ≥ tk+1,SB

∈ S(t) for t ≥ tk+1

Case 2: If Ik+1 = ∅, the committed trajectory is unchanged,

pcomk+1(t) = pcomk (t) ∈ S(t), ∀t ≥ tk+1.

The following shows that gatekeeper ensures safety.

Theorem 2. Under the assumptions of Theorem 1, if x(t0) =
pcom0 (t0), and for each k ∈ N the control input to the nominal
system (6) is

u(t) = πk
T (x(t), pcomk (t)),∀t ∈ [tk, tk+1), (28)

then the closed-loop dynamics (7) will satisfy

x(t) ∈ S(t),∀t ≥ t0. (29)

Proof. We prove this by showing that ∀k ∈ N, x(t) = pcomk (t)
for t ∈ [tk, tk+1). Again, we use induction.

Base Case: For the nominal system (6), when x(t0) =
pcom0 (t0) and the tracking controller is ISS (16),

‖x(t)− pcom0 (t)‖ ≤ β(0, t− t0) + γ(0) = 0

∴ x(t) = pcom0 (t) ∀t ∈ [t0, t1)

Induction Step: Suppose for some k ∈ N, x(t) = pcomk (t)
for t ∈ [tk, tk+1). There are two cases for pcomk+1:

Case 1: a new candidate is committed, ∴ pcan,TS

k+1 (tk+1) =
x(tk+1). Since the tracking controller is input-to-state stable,
this implies x(t) = pcomk+1(t) for t ∈ [tk+1, tk+2).
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Fig. 3. Diagram depicting the challenge due to disturbances. (a) Green line
shows the committed trajectory at iteration k, and the shaded region is the
tube that contains the system trajectory. If the validation step only checks that
the green tube lies within the safe set, a new candidate trajectory (red) cannot
be committed, since the candidate tube (red shaded region) intersects with the
unsafe set. (b) shows the proposed approach, where safety is checked wrt the
yellow set, i.e., a tube of radius R along the trajectory and a ball of radius
R+r at the end. This allows for sufficient margin to commit a new trajectory
at the next iteration.

Case 2: A new candidate is not committed, ∴ pcomk+1(t) =
pcomk (t) ∀t ∈ [tk+1, tk+2). Since x(tk+1) = pcomk (tk+1), the
tracking controller ensures x(t) = pcomk+1(t) ∀t ∈ [tk+1, tk+2).

Therefore, x(t) = pcomk (t) ∈ S(t) ∀t ∈ [tk, tk+1), for each
k ∈ N. Thus, x(t) ∈ S(t) for all t ≥ t0.

Remark 4. The controller in (28) uses the backup controller
πB : the committed trajectory pcomk is constructed such that
for all t ≥ tk,SB the trajectory uses the backup controller
(see (21)). Therefore, if after the k-th step new candidate
trajectories are not committed, the controller (28) applies the
backup controller for time t ≥ tk,SB .

Remark 5. In [7], [46], numerical forward propagation of the
trajectory with a backup controller is also used to construct a
safety filter. However, the resulting control input mixes the
nominal control input with the backup control input at all
times. In contrast, in gatekeeper we use a switching time
to switch between implementing the nominal control input and
the backup control input. This is desirable since it leads to less
conservative controllers, as highlighted in section VI-A.

B. Perturbed Case

We now address the case with non-zero disturbances and
state-estimation error.1 The algorithm is identical to that pre-
sented above, except that the validation step will be redefined.

First, we highlight the problem that disturbances introduce.
Consider the specific scenario visualized in Fig. 3. To account
for the disturbances, we validate safety of a tube around the
candidate trajectory: using the ISS bound (16), a tube of
decreasing radius around the committed trajectory will always
contain the true state of the system. Therefore, if instead
of (22), we checked that the corresponding tube containing
the candidate trajectory lies within the safe set (green tube in
Fig. 3a), then indeed, the system will remain safe.

1Compared to the conference version [8], here we consider the additional
uncertainty due to state estimation errors, and simplify the validation check.

However, when a new candidate is proposed at the next
iteration, the new tube (red tube) intersects with the unsafe
set. Thus, the new candidate cannot be committed, and an
undesired deadlock is reached: x(t) ∈ Ck(t) for all t ≥ tk,B .

To avoid this behavior, we propose a different validity
check. First, we check that a tube of radius R is safe over
the finite horizon, and second, we ensure Ck is a (larger)
distance R+r away from the unsafe set, where r,R are defined
below. In Fig. 3a, this is depicted by the yellow sets. Note,
the additional +r term is used to avoid the described deadlock
behaviour, and is not needed to guarantee safety.

Recall Def. 4 defines the controller’s tracking error bounds.
The validity check in Def. 7 is replaced by the following:

Definition 9 (Robustly Valid). Consider the dynamical sys-
tem (8), with bounded disturbances supt≥tk ‖d(t)‖ ≤ d̄,
and supt≥tk ‖v(t)‖ ≤ v̄. Let w̄ = max(d̄, v̄). Suppose
‖x(tk)− x̂(tk)‖ ≤ r for some k ∈ N. Let R = β(r, 0)+γ(w̄).

A candidate trajectory pcan,Ts

k : [tk,∞) → X defined
by (21) is robustly valid if

• the candidate trajectory coincides with the state estimate
at the initial time:

x̂(tk) = pcan,Ts

k (tk), (30)

• the candidate trajectory is robustly safe over a finite
interval:

pcan,TS

k (t) ∈ Bk(t)	 B(R) ∀t ∈ [tk, tk,B ], (31)

• at the end of the interval, it reaches Ck(t):

pcan,TS

k (tk,SB) ∈ Ck(tk,B), (32)

• and the set Ck(t) is (R+ r) away from the unsafe set:

Ck(t) ⊂ S(t)	 B(R+ r) ∀t ≥ tk. (33)

If a candidate trajectory is robustly valid, it can be com-
mitted. The following theorem proves that gatekeeper can
render the perturbed system (8) safe.

Theorem 3. Suppose Assumptions 1-4 hold. Suppose pcom0 :
[t0,∞)→ X is a committed trajectory that is robustly valid by
Def. 9 for some r > 0, TS ≥ 0. Suppose ‖x(t0)− x̂(t0)‖ ≤ r,
and pcom0 (t0) = x̂(t0).

If, for every k ∈ N\{0}, pcomk : [tk,∞)→ X is determined
using Def. 8 (except that validity is checked using Def. 9), and
the control input to the perturbed system (8) is

u(t) = πk
T (x̂(t), pcomk (t)) ∀t ∈ [tk, tk+1]

then the closed-loop system (10) will satisfy

x(t) ∈ S(t), ∀t ≥ t0. (34)

Proof. As in Thm. 1, we have that for any k ∈ N,

pcomk (t) ∈ S(t) ∀t ∈ [tk,∞). (35)

We aim to prove the analog of Thm 2, i.e., that for any
k ∈ N, tracking the committed trajectory pcomk (tk) for t ≥ tk
is safe. This is proved below.



Since pcomk is robustly valid, pcomk (tk) = x̂(tk). Therefore,

‖x(tk)− pcomk (tk)‖ = ‖x(tk)− x̂(tk)‖ ≤ r.

Using (16), this implies that for all t ≥ tk,

‖x(t)− pcomk (t)‖ ≤ β(r, t− tk) + η(w̄)

≤ β(r, 0) + η(w̄) = R

∴ ‖x(t)− pcomk (t)‖ ≤ R

and so by (31),

pcomk (t) ∈ Bk(t)	 B(R) ∀t ∈ [tk, tk,SB ]

=⇒ {pcomk (t)} ⊕ B(R) ⊂ Bk(t) ∀t ∈ [tk, tk,SB ]

=⇒ x(t) ∈ Bk(t) ∀t ∈ [tk, tk,SB ].

Furthermore, since for all t ≥ tk +TS the committed trajec-
tory is generated by the backup controller, and pcomk (tk,B) ∈
Ck(tk,B), we have pcomk (t) ∈ Ck(t),∀t ≥ tk,B . Therefore,

x(t) ∈ Ck(t)⊕ B(R) ∀t ≥ tk,B .

Putting these together,

x(t) ∈

{
Bk(t) for t ∈ [tk, tk,B ]

Ck(t)⊕ B(R) for t ≥ tk,B

=⇒ x(t) ∈

{
Sk(t) for t ∈ [tk, tk,B)

Sk(t) for t ≥ tk,B
⇐⇒ x(t) ∈ S(t) ∀t ≥ tk.

This proves that for any k ∈ N, if pcomk is the committed
trajectory, the system will remain safe while it is tracking
pcomk . When a new candidate trajectory that is robustly valid
(by Def. 9) is found, the committed trajectory can be updated,
and the system will continue to remain safe.

Remark 6. The theorem provides certain parameters of the
nominal planner. For instance, requiring trajectories to lie in
B(tk)	B(R) corresponds to the common practice of inflating
the unsafe sets by a radius R. The theorem shows that any
R ≥ β(r, 0) + γ(w̄) is sufficient.

Remark 7. In (33), we checked that Ck(t) is at least (R+ r)
away from the boundary of S(t) at all t ≥ tk, even though
the proof of safety only requires a margin R. The reason
we check for (R + r) is to prevent the deadlock scenario
discussed before: under the stated assumptions, for t ≥ tk,
‖x(t)− x̂(t)‖ ≤ β(t − tk) + γ(w̄). Therefore, if r ≥ γ(w̄)
there exists some time τ = tk + T where r = β(T, r) + γ(w̄)
since class KL functions are strictly decreasing wrt t. Thus,
for t ≥ τ , pcomk (t) ∈ Ck(t). Thus,

x(t), x̂(t) ∈ Ck(τ)⊕ B(r)

and ‖x(t)− x̂(t)‖ ≤ r. Thus, when validating the new
candidate trajectory pcan,Ts

k′ they will start at least R away
from the boundary, i.e., there is sufficient margin for new
trajectories to be committed.

Remark 8. In constructing candidate trajectories, we require
the initial state of the candidate trajectory to coincide with

the state estimate, (30). If this is not the case, an additional
margin would be necessary in (33) to account for this error.

Remark 9. The construction of committed trajectories is sum-
marized in pseudo-code in Alg. 1. max I can be determined
efficiently, since it is an optimization of a scalar variable
over a bounded interval. We used a simple grid search with
N points. Therefore, upto N initial value problems need to
be solved, which can be done very efficiently using modern
solvers [48]. Using N = 10, the median computation time
was only 3.4 ms. Other strategies including log-spacing or
optimization techniques could be investigated in the future.

Algorithm 1: gatekeeper
1 Parameters: N > 0 ∈ N
// Do a grid search backwards over

the interval [0, TH ]:
2 for i in range(0, N ): do
3 Using Bk(t), identify Ck(t) satisfying assum. 4.
4 TS = (1− i/N)TH
5 Solve the initial value problem (21) to determine

pcan,TS

k (t) over the interval [tk, tk + TS + TB ]

6 if pcan,TS

k is robustly valid by Def. 9 then
7 pcomk = pcan,TS

k

8 return

// no candidate is valid, I = ∅
9 pcomk = pcomk−1

10 return

VI. SIMULATIONS AND EXPERIMENTS

Code and videos are available here: [1]. We test two case
studies to evaluate gatekeeper, where the second case
study is also performed using hardware experiments. A key
strength of gatekeeper is that it can be composed with
existing perception, planning and control algorithms, and the
various techniques used are summarized in Table II. The
details are provided in the following paragraphs.

A. Firewatch Mission

We simulate an autonomous helicopter performing the fire-
watch mission, around a fire with an initial perimeter of 16 km.
The helicopter starts 0.45 km from the fire, and is tasked to
fly along the perimeter at a target airspeed of 15 m/s without
entering the fire. The helicopter is modeled as

ẋ1 = x3 cosx4 ẋ2 = x3 sinx4

ẋ3 = u1 ẋ4 = (g/x3) tanu2,

where x1, x2 are the cartesian position coordinates of the
helicopter wrt an inertial frame, x3 is the speed of the vehicle
along its heading, x4 is the heading, and g is the acceleration
due to gravity. The control inputs are u1, the acceleration
along the heading, and u2, the roll angle. The inputs are
bounded, with |u1|< 0.5g and |u2|< π/4 rad. This system
models a UAV that can control its forward airspeed and



Table II. Methods used in implementing gatekeeper for each case study. Details are provided in the text.

Firewatch Mission Quadrotor Navigation

Sensed Data Image of fire RGBD image
Perception Output Signed Distance Field (SDF) SDF + Safe Flight Corridor (SFC)
Nominal Planner MPC Distance Map Planner (DMP)
Tracking Controller PD-Controller Geometric Controller
Backup Controller Fly perpendicular to fire Stop and yaw
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Fig. 4. Simulation results from Firewatch mission. (a) Snapshots of the fire and trajectories executed by each of three controller. The fire is spreading outwards,
and the helicopters are following the perimeter. The black line traces the nominal controller, the blue line is based on the backup filter adapted from [7] and
the green line shows the proposed controller. (b, c) show specific durations in greater detail. At t = 0, the gatekeeper controller behaves identically to
the nominal controller, and makes small modifications when necessary to ensure safety. The backup filter is conservative, driving the helicopter away from
the fire and slowing it down. (d) Plot of minimum distance to fire-front across time for each of the controllers. (e) The nominal controller becomes unsafe 3
times, while FASTER, the backup controller, and the gatekeeper controllers maintain safety. Animations are available at [1].

makes coordinated turns. Notice the model has a singularity
at x3 = 0, and the system is not control affine.

The fire is modeled using level-set methods [49]. In par-
ticular, the fire is described using the implicit function φ :
R × R2 → R, where φ(t, p) is the signed distance to the
firefront from location p at time t. Hence, the safe set is

S(t) = {x : φ(t, [x1, x2]T ) ≥ 0}

where [x1, x2] are the Cartesian coordinates of the UAV.
The evolution of the fire is based on the Rothermel 1972

model [34]. Given the Rate of Spread (RoS) function σ : R2 →
R, the safe set evolves according to

∂φ

∂t
(t, p) + σ(p) ‖∇φ(t, p)‖ = 0 ∀p ∈ R2 (37)

The RoS depends on various environmental factors including
terrain topology, vegetation type, and wind [34], [35] but can
be bounded [50]. The simulated environment used a RoS

function that the controllers did not have access to. The only
information the controllers could use was the thermal image
(to detect the fire within a ±1 km range of the UAV) and the
assumption that the maximum rate of spread is 8 km/h.

We compare our approach against the nominal planner and
two state of the art methods for similar problems, Fig. VI-A.
In particular, we compare (A) a nominal planner (black),
(B) FASTER [6] (purple), (C) Backup Filters [7] (blue) and
(D) gatekeeper (green). Since these methods were not
originally developed for dynamic environments with limited
sensing, both methods (B, C) were modified to be applicable
to this scenario. See [1] for details. Method (A) represents
the baseline planner without any safety filtering. Methods (B),
(C) and (D) are safety filtering methods that use the nominal
planner of (A) and modify it to ensure safety.

The simulation environment and each of the methods were
implemented in julia, to allow for direct comparison, using
Tsit5() [48] with default tolerances. Each run simulates a



Table III. Comparison of gatekeeper (ours) with the nominal planner, FASTER [6], and backup filters [7]. The distance to the firefront, velocity of the
helicopter, and computation time per iteration are reported for each method. IQR = interquartile range. ∗Since the backup filter is run at each control

iteration instead of every planning iteration, it runs 20 times as often as gatekeeper, i.e., is 5 times as computationally expensive as gatekeeper.

Distance to Fire [km] Speed [m/s] Comp. time [ms]
Minimum Mean Std. Mean Std. Median IQR

Target ≥ 0 0.100 - 15.0 - - -

Nominal Planner -0.032 0.098 0.032 15.14 0.73 27.32 4.37 Unsafe
FASTER [6] 0.040 0.101 0.030 12.60 2.08 78.50 20.64 Safe, but gets trapped in pocket
Backup Filters [7] 0.081 0.240 0.054 10.11 3.52 0.87∗ 0.05 Safe, but conservative and slow
Gatekeeper (proposed) 0.049 0.108 0.034 14.91 1.35 3.39 0.11 Safe

flight time of 50 minutes. The tracking controller was imple-
mented as zero-order hold, updated at 20 Hz. Measurements of
the firefront were available at 0.1 Hz, triggering the planners to
update, intentionally slow to highlight the challenges of slow
perception/planning systems. The measurements are a bitmask
image, defining the domain where φ ≤ 0, at a grid resolution
of 10 meters. These simulations were performed on a 2019
Macbook Pro (Intel i9, 2.3 GHz, 16 GB).

In the nominal planner, a linear MPC problem is solved to
generate trajectories that fly along the local tangent 0.1 km
away from firefront at 15 m/s. The planner uses a simplified
dynamic model, a discrete-time double integrator. This convex
quadratic program (QP) is solved using gurobi. The median
computation time is 27 ms, using N = 40 waypoints and
a planning horizon of 120 seconds. The tracking controller
is a nonlinear feedback controller based on differential flat-
ness [16], [45]. When tracking nominal trajectories, the system
becomes unsafe, going as far as 32 m into the fire.

In FASTER, the same double integrator model is assumed,
and a similar MPC problem is solved. We impose additional
safety constraints, that the committed trajectory must lie within
a safe flight corridor [10] based on the signed distance field
to the fire, corrected based on the maximum fire spread rate.
While this approach does keep the helicopter outside the fire,
it gets surrounded by the fire (Fig. VI-Aa). This is ultimately
due to the fact that FASTER only plans trajectories over a
finite planning horizon, and is therefore unable to guarantee
recursive feasibility in a dynamic environment. Due to the
large number of additional constraints on the QP, FASTER is
about 3 times slower than the nominal planner.

In the Backup Filters approach, the backup trajectory is
numerically forward propagated on the nonlinear system over
the same 120 second horizon, and can be computed efficiently,
requiring less than 1 ms per iteration. Although this keeps the
system safe, it does so at the cost of performance: the mean
distance to the fire is 0.24 km, more than twice the target value,
and the average speed is 10 m/s, 33% less than the target. This
is because the desired flight direction is perpendicular to the
backup flight direction, and therefore the executed trajectory
is always off-nominal.

In gatekeeper, the committed trajectories are con-
structed by maximizing the interval that the nominal trajectory
is tracked, before implementing the backup controller. This al-
lows the system to follow the nominal, and deviate only when
required to ensure safety. As before, the nominal trajectory
is 120 s long, and the backup is simulated for TB = 120 s.
To initialize gatekeeper, the first candidate trajectory is

constructed using just the backup controller, effectively setting
Ts = 0. In our experiments this was sufficient ensure an initial
valid committed trajectory.

In Fig. VI-Ac, we see that gatekeeper chooses to not fly
into the pocket, since it cannot ensure a safe path out of the
pocket exists. gatekeeper is computationally lightweight,
with a median run time of 3.4 ms, more than 20 times faster
than FASTER. This is because gatekeeper searches over
a scalar variable in a bounded interval, instead of optimizing
R4N+2N−2 variables as in the MPC problem.

We studied the effect of conservatism in the environment
model. For instance, suppose we assumed the max fire spread
rate was 16 km/hr instead of 8 km/hr. Simulations showed
that gatekeeper still maintains safe, but the resulting
trajectories are more conservative: the mean distance to the
fire increases by 37% to 0.148 km, and the mean speed
decreases by 19% to 12.14 m/s. Despite doubling the level
of conservatism in the environment model, we see a modest
impact on the conservativeness of the resulting trajectories.

B. Quadrotor Navigation (Simulations)

We demonstrate the efficacy of the gatekeeper algorithm
for a quadrotor flying through a previously unobserved area, in
both a high fidelity simulation, and hardware experiments. The
desired goal location is specified by the human operator. The
quadrotor must simultaneously sense the environment, build a
local map of the obstacles, plan a path to the goal, filter the
path using gatekeeper, and finally execute the committed
trajectory. All of the processing happens onboard, in realtime,
and by using gatekeeper, the quadrotor does not crash into
any obstacles. Each step of the perception-planning-control
stack is described next, followed by a comparison to state-
of-the-art methods. All simulations were run using Gazebo
and RotorS [51], on an AMD Ryzen 7 5800h CPU 16 GB
with a NVIDIA RTX 3050Ti. All hardware experiments were
performed on a 16 GB Nvidia Xavier NX.

An environment with a forest of cylinders of random sizes,
locations, and heights is generated in a corridor 50 m long,
and 10 m wide. The start and goal locations are free, but a
safe trajectory between these may not exist in environments
with many obstacles. Since DMP is complete, the quadrotor
will continue to explore until it finds a path to the goal.

Perception: The quadrotor is equipped with a front-facing
Intel Realsense D455 camera, which has a limited field of
view of 87◦ × 58◦, and a limited sensing range of 8 meters,
operating at 30 FPS. The incoming depth maps are fused into a



Fig. 5. (Left) Simulation environment comprising of a quadrotor navigating in a 50 m long corridor with randomly scattered cylindrical obstacles of various
heights and radii. This picture depicts the “Easy 1” world. (Right) The point-cloud sensor data received by the quadrotor describing the environment. Using
the point-cloud, a SDF representation of the environment is constructed. A SFC, i.e., a convex polyhedron of obstacle-free space, centered on the quadrotor is
extracted and used as the perceived safe set. The nominal planner treats unknown regions as free, while gatekeeper treats unknown regions as occupied.
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Fig. 6. Trajectories executed in the “Hard 1” world, using (a) MPC-based safety filter (baseline) and (b) the proposed gatekeeper-based safety filter.
The gray circles indicate obstalces. Visually, the paths are similar, and are traversed with similar speeds. The color indicates that for most of the trajectories,
the speed is at the target of 1 m/s, but near the obstacles (where there is greater replanning), the speeds vary more. (c) Box-and-whiskers plot showing the
computation time for perception, planning, and safety filtering. The computation time for perception and path planning is similar with both safety filters, since
both use the same perception and path planning implementation. However, gatekeeper is significantly faster than the MPC-based safety filter.

Euclidean Signed Distance Field (ESDF) representation using
the NvBlox package [52] at a resolution of 7.5 cm.

Path Planner: From the ESDF, a 2D slice of the obstacle
geometry between 0.8-1.2 m height is extracted. The path to
the goal location is planned using the DMP [10], a compu-
tationally efficient alternative to A* which also pushes the
path away from the obstacles. Unknown cells are treated
as free cells. The planner takes less than 30 ms to replan
trajectories, and is operated at 5 Hz. Given a desired linear
travel speed v = 2 m/s, time is allocated to each leg of the
returned path to construct the trajectory. This trajectory is not
dynamically feasible for the quadrotor’s nonlinear dynamics.

Safety Filtering: In our implementation of gatekeeper,
a 4×4×2 meter block centered on the quadrotor is extracted
from the ESDF. unknown voxels are treated as obstacles. A

convex polyhedron representing the safe region is constructed
using the DecompUtil [10], and is the safe set Bk used in
gatekeeper. The environment is assumed static, but is
unknown at the start of the run - as new regions are observed,
the perceived safe set expands to include new regions.

Next, gatekeeper (as described in Algorithm 1) is used
to convert the nominal trajectory into a dynamically feasible
and safe trajectory for the quadrotor to follow.2 The backup
controller used is a stopping controller. For pcan to be valid,
it must (A) lie within the safe polyhedron mentioned above
(accounting for the grid resolution (0.075 m), the quadrotor’s

2We used a triple integrator model to validate trajectories, as in [6], [53],
[54]. We tried the nonlinear model in [44], but the communication latency
between the Pix32 and Xavier NX degraded performance.



Table IV. Summary of simulations in 15 different worlds with 3 difficulty levels, comparing the performance of an MPC-based safety filter against
gatekeeper. gatekeeper is able to successfully reach the goal in more scenarios, and is an order of magnitude computationally faster.

Goal Reached? Median Comp. Time [ms] Max Comp. Time [ms] Average Speed [m/s]

World MPC GK MPC GK MPC GK MPC GK

easy 1 True True 34.71 ± 0.10 3.28 ± 0.04 168.89 10.78 0.91 0.81
easy 2 True True 35.55 ± 0.11 3.42 ± 0.05 161.59 10.51 0.82 0.77
easy 3 True True 33.18 ± 0.12 3.26 ± 0.05 151.12 12.48 0.83 0.67
easy 4 True True 34.17 ± 0.25 3.33 ± 0.05 172.15 11.70 0.83 0.45
easy 5 True True 35.40 ± 0.20 3.36 ± 0.05 180.94 11.94 0.90 0.35
medium 1 True True 39.78 ± 0.20 3.27 ± 0.06 178.21 10.62 0.78 0.61
medium 2 False True 47.62 ± 1.10 3.27 ± 0.05 217.97 12.19 0.57 0.76
medium 3 True True 33.65 ± 0.08 3.18 ± 0.04 199.93 11.53 0.79 0.75
medium 4 False False 44.93 ± 2.03 3.23 ± 0.06 199.74 9.25 0.44 0.43
medium 5 True True 27.72 ± 0.10 3.23 ± 0.05 211.08 10.82 0.81 0.82
hard 1 True True 31.22 ± 0.16 3.18 ± 0.07 201.54 9.65 0.68 0.82
hard 2 False True 56.61 ± 0.61 3.41 ± 0.08 184.23 12.06 0.68 0.79
hard 3 False False 44.75 ± 0.54 3.35 ± 0.06 213.06 9.43 0.34 0.54
hard 4 True True 13.60 ± 0.09 3.25 ± 0.04 218.98 10.41 0.34 0.73
hard 5 False True 56.57 ± 4.26 3.25 ± 0.06 208.30 10.15 0.50 0.68

radius (0.15 m), and a robustness margin R = 0.1 m)3,
(B) terminate within the safe polyhedron accounting for the
quadrotor radius and a robustness margin R+ r = 0.2 m, (C)
terminate with zero speed and zero control input. These condi-
tions guarantee that the quadrotor can hover indefinitely at the
terminal position.4 The maximum switch time was TS ≤ 2 s,
and the backup trajectory was propagated from Tb = 2.0 s.
Note, due to the safety filtering, the nominal trajectory may not
be traversable, for instance through a narrow passage. When
this occurs, gatekeeper publishes a virtual obstacle, forcing
the nominal planner to replan alternative routes.

Tracking Controller: The last committed trajectory tracked
using a geometric tracking controller [44], running at 250 Hz.

Benchmark: Our implementation of gatekeeper is com-
pared with an MPC safety filter. In the MPC filter, the
following optimization problem is solved:

argmin
x∈XN+1,u∈UN

N∑
i=0

‖xi − [pnomk ]i‖2Q +

N−1∑
i=0

‖ui − [unomk ]i‖2R

s.t. xi+1 = Axi +Bui

xi ∈ Bk
x0 = x̂(tk), xN = xN−1

where [pnomk ]i = pnomk (tk + i∆T ) where ∆T = 0.02 seconds
is the discretization step size. A planning horizon of 2 seconds
is considered, same as in our gatekeeper implementation.
[unomk ]i the corresponding control input. To avoid solving
a nonlinear program, the dynamics model assumed for the
MPC safety filter is the linear double integrator. The set Bk is
the same safe flight polyhedron used in gatekeeper. The

3Robustness margins were determined by flying the quadrotor, and mea-
suring the tracking error as it executed some trajectories. The measured error
was 5-10 cm, and thus R = 0.1 m was chosen.

4Here, we do not consider the quadrotor’s limited battery life as a constraint.
This is addressed in [55] using the gatekeeper strategy.

initial condition is required to match with the estimated state,
and the last constraint ensures that the quadrotor trajectory
terminates within the horizon. The resulting problem is a
quadratic program, and solved using OSQP [56].

Results: Fifteen different world environments were con-
structed with 3 difficulty levels, defined by the density of
obstacle cylinders (Fig. 5). The quadrotors were tasked to
fly a linear distance of 54 meters, at a desired speed of
1 m/s. Table IV summarizes the performance with the MPC
safety filter and using gatekeeper. Both the MPC and
gatekeeper algorithms prevented collisions. In some cases
neither MPC nor gatekeeper were able to reach the goal
location, although gatekeeper was able to find a trajectory
in more cases than MPC. MPC was consistently slower than
the gatekeeper, requiring approximately 10x the compu-
tation time. Finally the average speed of the quadrotor was
similar with both filters. Through this, we conclude that the
performance of gatekeeper and MPC are similar, although
gatekeeper computationally efficient, while additionally
handling the nonlinear dynamics of the quadrotor.

C. Quadrotor Navigation (Experiments)

We also demonstrate the algorithm experimentally. A cus-
tom quadrotor was designed to optimize the payload, and
maximize the flight time (Fig. 7). The quadrotor’s wet weight
is 820 g, with a 15 min hover flight time. The perception,
planning, and safety filtering steps were all performed on an
onboard computer, the NVIDIA Xavier NX. The low-level
geometric controller [44] was implemented on a Pix32V6c,
communicating with the Xavier over UART. The goal desti-
nation and yaw angle was specified by a human operator.

As in the simulations, the quadrotor uses the Realsense
D455 camera’s RGBD images to construct a map of the
environment using NvBlox, plans a trajectory using DMP, and



Nvdia Xavier NX 
Intel Realsense D455
Pix32V6 with custom
breakout board

30A 4-in-1 ESC
4s 3000mAh Battery
4x EMax RS2205S
4x 5045 Propellers

Fig. 7. Quadrotor used for experiments. A combination of off-the-shelf
components and custom breakout boards is used to minimize weight and
maximize performance.

filters the trajectory using gatekeeper.5 The last committed
trajectory is tracked using the geometric controller. Each of
these steps were implemented as described in Section VI-B.

Figure 8 shows top-down snapshots of the map, and both
the nominal and committed trajectories. See the video in [1].
Initially, the quadrotor tries to fly through a gap between the
green and red obstacles. However, since the gap is too small
for gatekeeper to certify that it is safe to traverse through
the gap,6 new trajectories are not committed, and the quadrotor
executes its backup controller: stop and yaw. Once the nominal
planner plans a new trajectory towards the right gatekeeper
allows a new trajectory to be committed. However, as the
quadrotor approaches this gap, again it is too narrow to
safely traverse. This repeats a few times before eventually
the nominal planner finds the trajectory that indeed is safe
to traverse, and the quadrotor reaches the goal destination.

In Fig. 9, the times at which nominal and committed
trajectories are published are plotted. In our implementation
using ROS2, when no new candidate trajectories are valid
(as in (26)), the gatekeeper node does not publish a new
committed trajectory, and therefore the controller continues to
track the last committed trajectory. Therefore, in Fig. 9, the
path-planner publishes at regular intervals, but there are gaps
when gatekeeper is running but not publishing new com-
mitted trajectories. To allow the system to continue making
progress towards the goal, we publish a virtual obstacle along
the nominal trajectory when this happens, forcing the path
planner to find a new trajectory to the goal. In this particular
run, we observed 9 such instances.

The experiments also highlighted some limitations of
gatekeeper that can form the basis for future study. In
particular, suppose a nominal planner is poorly designed, and
produces trajectories that are collision free, but not desirable,
e.g., if the nominal plan causes the drone to jerk back and
forth and yaw rapidly. Such a nominal trajectory could pass
the validity check 9, but could lead to the quadrotor chattering.
In the future, we wish to investigate how to co-design the

5In hardware, the path planner replans once every 2 seconds. The ESDF is
updated at 5 Hz, and gatekeeper is run at 20 Hz.

6The minimum gap required is the sum of (quadrotor diameter, 0.3 m) +
(voxel size of map, 0.075 m) + (tracking radius r, 0.1 m) + (robustness radius
R 0.1 m) = 0.58 m. The gap was measured to be 0.45 m across.

gatekeeper with planners and controllers to avoid such
undesired trajectories. In our experiments, we have sometimes
observed the nominal planner making large and abrupt changes
in the nominal trajectory, but the quadrotor was able to track
the committed trajectories.

Finally, further investigation into the design of backup con-
trollers could yield interesting directions for future research.
In our current implementation, the backup controller stops the
quadrotor along the nominal trajectory. However, the position
at which the quadrotor comes to a stop could be designed, for
example, to maximize the visibility of the unknown regions.
Such a backup controller would still maintain safety but
also allow the quadrotor to reason more efficiently about the
environment it is operating in. Furthermore, to operate this
quadrotor in an environment with dynamic obstacles further
attention will be needed on the design of backup controllers. If
one were to assume a bounded speed at which the environment
could move, the safe flight polyhedrons could quickly collapse
to becoming empty. Using semantic maps, for example [57],
might help to identify the dynamic parts of the environment,
and overcome this issue.

VII. CONCLUSION
This paper proposes an algorithm (“gatekeeper”) to

safely control nonlinear robotic systems while information
about dynamically-evolving safe states is received online. The
algorithm constructs an infinite-horizon committed trajectory
from a nominal trajectory using backup controllers. By ex-
tending a section of the nominal trajectory with the backup
controller, gatekeeper is able to follow nominal trajectories
closely, while guaranteeing a safe control input is known at
all times. We have implemented the algorithm in a simulated
aerial firefighting mission and on-board a real quadrotor, where
we demonstrated gatekeeper is less conservative than
similar methods, while remaining computationally lightweight.
Various comparisons to state-of-the-art techniques are also
provided.

A key benefit of the gatekeeper approach is its appli-
cability in dynamic environments where the safe set is sensed
online. This allows the method to be applied to a wide range of
scenarios where only limited safety information is known, for
instance, overtaking and merging scenarios for autonomous
vehicles. A limitation of gatekeeper is the difficulty in
finding backup controllers and sets that are suitable for the
robotic system and environment considered, particularly in
time-varying environments. Ultimately the possible safety
guarantees rely on the ability to make forecasts of the environ-
ment given limited sensing information. Furthermore, when
there are multiple safety conditions that must all be satis-
fied simultaneously, one could either design a single backup
controller to satisfy all the constraints, or design multiple
separate backup controllers and switch between them. Both
of these approaches have their challenges and their suitability
is case-dependent. These strategies require further analysis,
an interesting direction for future work. Future directions also
include developing more general methods to identify backup
controllers, and understanding how the method can be applied
in adversarial multi-agent settings.
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APPENDIX

A. Worked Example for the Firewatch Scenario

This example demonstrates how the sets S(t),Bk(t), Ck(t)
are related, using the firewatch mission. For simplicity, con-
sider a double integrator system,

ẋ = Ax+Bu (38)

where xpos = [x1, x2]T is the position of the helicopter, and
xvel = [x3, x4]T is the velocity.

Say the fire starts at t = t0, at location p = [0, 0]T . The
fire expands radially, with rate of spread σ : R2 → R≥0, i.e.,
σ(p) is the rate of spread at a location p ∈ R2. To simplify the
algebra, assume the RoS depends only on ‖p‖, i.e, σ(p1) =
σ(p2) for any ‖p1‖ = ‖p2‖. This means that the fire always
spreads out uniformly in a circle.

Therefore, the safe set is time-varying, described by

S(t) =

{
x : ‖xpos‖ ≥

∫ t

0

σ(r(τ))dτ

}
∀t ≥ 0 (39)

where r(t) is the radius of the fire at time t ≥ t0.
Since we don’t know σ, we don’t know S(t). Instead, we

assume a reasonable upper bound: σ(r) ≤ 2 m/s for all r ≥ 0.
Therefore, at t = t0, we can define an perceived safe set:

B0(t) = {x : ‖xpos‖ ≥ 2(t− t0)} ∀t ≥ t0 (40)

and clearly B0(t) ⊂ S(t) ∀t ≥ 0. Notice that B0(t) is not a
controlled invariant set for the double integrator.7

Suppose the system can directly measure the fire’s radius.
Let the k-th measurement be rk = r(tk). This allows us to
define the k-th perceived safe set:

Bk(t) = {x : ‖xpos‖ ≥ rk + 2(t− tk)} ∀t ≥ tk (41)

One can verify

Bk(t) = {x : ‖xpos‖ ≥ rk + 2(t− tk)}

=

{
x : ‖xpos‖ ≥

∫ tk

t0

σ(r(τ))dτ + 2(t− tk)

}
⊂
{
x : ‖xpos‖ ≥

∫ tk

t0

σ(r(τ))dτ +

∫ t

tk

σ(r(τ))dτ

}
=

{
x : ‖xpos‖ ≥

∫ t

t0

σ(r(τ))dτ

}
= S(t)

i.e. Bk(t) ⊂ S(t) for all t ≥ tk.
Similarly, we can verify that for any k ≥ 0,

Bk+1(t) = {x : ‖xpos‖ ≥ rk+1 + 2(t− tk+1)}

=

{
x : ‖xpos‖ ≥ rk +

∫ tk+1

tk

σ(r(τ))dτ + 2(t− tk+1)

}
⊃ {x : ‖xpos‖ ≥ rk + 2(tk+1 − tk) + 2(t− tk+1)}
= {x : ‖xpos‖ ≥ rk + 2(t− tk)}
= Bk(t)

7Technically, a higher-order CBF could be used to design a QP controller
that renders a subset of B0(t) forward invariant, but this is only possible since
B0(t) is a sufficiently smooth function that we can analyze analytically.

fire is expanding

radially

Fig. 10. Depiction of the scenario in the worked example.

i.e., Bk(t) ⊂ Bk+1(t) for all t ≥ tk.
This proves that Assumption 1 is satisfied. Next, we define

the backup controllers.
For any k ∈ N, suppose the state is xk = x(tk). The backup

controller should drive the system radially away from the fire.
Define nk as the unit vector pointed at x(tk):

nk = xpos(tk)/‖xpos(tk)‖ (42)

Notice that if the position followed the reference

pref (t) = (1 + rk + 2(t− tk))nk (43)

then the reference is moving radially at a speed of 2 m/s, and
therefore faster than the maximum spread rate of the fire. Thus
pref (t) is a safe trajectory for all t ≥ tk.

This leads to the following backup controller:

πB
k (t, x) = −K

([
xpos
xvel

]
−
[
pref (t)

2nk

])
(44)

where K ∈ R2×4 is a stabilizing LQR gain for the double
integrator. This controller stabilizes the system to Ck(t), where

Ck(t) =

{
x :

∥∥∥∥x− [pref (t)
2nk

]∥∥∥∥ ≤ 1

}
(45)

This set is controlled invariant using the backup controller πB
k .

Geometrically, Ck(t) is a unit norm ball that is moving radially
at 2 m/s in the nk direction. Therefore, Ck(t) ⊂ S(t) for all
t ≥ tk, since the set is moving outwards radially at a speed
higher than the maximum spread rate.

This example demonstrates how S(t), Bk(t), Ck(t) can
be defined for a given problem. The main validation step
in gatekeeper, will confirm whether after following the
nominal trajectory over [tk, tk + TS), the system is able to
safely reach Ck(t) using the backup controller πB

k .
While the sets were described analytically here, in simula-

tions they were represented numerically using SDFs.
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