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two main questions

How can we ensure safety constraints are 
not violated during operation?

What are the limits of the information 
gathering ability of robots?

Part 1: gatekeeper Part 2: Clarity and Perceivability

introduction :: gatekeeper :: perceivability :: conclusions
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why do we want safety?

Why do you choose to use the lift?

The lift has a built-in safety mechanism: 
when the cable is severed, a leaf-spring is 
released, and it grabs onto the lift shaft.

How does this extend to modern autonomous 
systems?

introduction :: gatekeeper :: perceivability :: conclusions
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why do we want safety?

Why do you choose to use the lift?

Otis’ lift had a built-in safety mechanism: 
when the cable is severed, a leaf-spring is 
released, and it grabs onto the lift shaft.

How does this extend to modern autonomous 
systems?

Elisha Otis, 1854

introduction :: gatekeeper :: perceivability :: conclusions
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what are safety guarantees?

Ex. 1: Subterranean Navigation Ex. 2: Firewatch Mission

Navigate through the caves to 

get a goal location.

Could be teleoperated or fully 

autonomous.

Fly along the fire perimeter.

The helicopter’s GPS trace will 

used to allocate firefighting 

resources later.

introduction :: gatekeeper :: perceivability :: conclusions
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what are safety guarantees?

Ex. 1: Subterranean Navigation Ex. 2: Firewatch Mission

We want to ensure safety, obstacle avoidance helicopter doesn’t enter the fire

subject to dynamics and input 

constraints,

quadrotor dynamics 

max speed of each motor

helicopter dynamics 

max engine thrust and max roll angle

while completing the mission, navigate to a target location map the boundary of the fires

and being robust to disturbances

and uncertainties

wind, ground-effect, GPS-denied… unknown fire spread rate, …

introduction :: gatekeeper :: perceivability :: conclusions
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what are safety guarantees?

Ex. 1: Subterranean Navigation Ex. 2: Firewatch Mission

We want to ensure safety, obstacle avoidance helicopter doesn’t enter the fire

subject to dynamics and input 

constraints,

quadrotor dynamics 

max speed of each motor

helicopter dynamics 

max engine thrust and max roll angle

while completing the mission, navigate to a target location map the boundary of the fires

and being robust to disturbances

and uncertainties

wind, ground-effect, GPS-denied… unknown fire spread rate, …

We want a mathematical guarantee that the robot will not 

become unsafe/behave unexpectedly.

introduction :: gatekeeper :: perceivability :: conclusions
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how do we build (safe) autonomy?

The “autonomy stack” consists of many modules.

The only interface to the robot is the control input and the sensor output.

introduction :: gatekeeper :: perceivability :: conclusions
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how do we build (safe) autonomy?

The “autonomy stack” consists of many modules.

The only interface to the robot is the control input and the sensor output.

Perception: Estimate robot’s state

Estimate fire map

Planner: Plan trajectories around fire perimeter

Controller: Compute control inputs to track the 

planned trajectory

introduction :: gatekeeper :: perceivability :: conclusions
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Domain 𝒳 ⊂  ℝ𝑛

Robot

formalizing the notion of safety

ex: avoid the walls, stay out of the fire

introduction :: gatekeeper :: perceivability :: conclusions
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ways to achieve safety: filter the controller

Since the control inputs determine the future trajectory, 

(and hence safety) can we “filter” the controller?

introduction :: gatekeeper :: perceivability :: conclusions
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Domain 𝒳 ⊂  ℝ𝑛

Robot

safety through filtering control inputs

[1] Ames et al. TAC 2017.

introduction :: gatekeeper :: perceivability :: conclusions



14

ways to achieve safety: filter the controllerconstrain the planner

What if we made the safety constraints explicitly 

part of the planner?

introduction :: gatekeeper :: perceivability :: conclusions
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safety through constraints in planner

       

   

Path Planning

Ex. RRT*, A*, …

+ can handle complex and dynamic 

environments

- different models used by planner 

and controller leads to problems

       

   

Model Predictive Control

Ex. Nonlinear-MPC, MPPI, … 

+ considers future behavior of robot 

and environment 

- need to ensure recursive feasibility 

and stability

- can be computationally challenging 

in nonconvex cases

introduction :: gatekeeper :: perceivability :: conclusions
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many ways to achieve safety:
Constrained Planners

How does a human achieve this complex mission?

By thinking about contingencies/fail-safes/backups.

Control Barrier Functions

introduction :: gatekeeper :: perceivability :: conclusions
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perspective shift:

What if we ensured that there exists a way to be safe from the current state?

Can we do this without compromising on the mission objectives?

Instead of checking that a controller is safe for all initial states,

gatekeeper

introduction :: gatekeeper :: perceivability :: conclusions
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gatekeeper

introduction :: gatekeeper :: perceivability :: conclusions



19

gatekeeper

introduction :: gatekeeper :: perceivability :: conclusions
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gatekeeper

Split into finite horizon

introduction :: gatekeeper :: perceivability :: conclusions
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gatekeeper

Check that it 

safely reaches 𝒞𝑘

introduction :: gatekeeper :: perceivability :: conclusions
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gatekeeper

introduction :: gatekeeper :: perceivability :: conclusions
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gatekeeper

• Step 1: Identify 𝒞𝑘

• Step 2: Construct a candidate trajectory

• Choose a switch time 𝑡𝑘𝑆

• Forward propagate tracking nominal until 𝑡𝑘𝑆

• Forward propagate backup controller until 𝑡𝑘𝐵

• Choose largest 𝑡𝑘𝑆 such that candidate is valid

• Step 3: Update committed trajectory

• If we found a candidate trajectory is valid,
replace committed trajectory.

• Else, keep old committed trajectory.

Controller always tracks the last committed 
trajectory.

introduction :: gatekeeper :: perceivability :: conclusions
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gatekeeper

• Step 1: Identify 𝒞𝑘

• Step 2: Construct a candidate trajectory

• Choose a switch time 𝑡𝑘𝑆

• Forward propagate tracking nominal until 𝑡𝑘𝑆

• Forward propagate backup controller until 𝑡𝑘𝐵

• Choose largest 𝑡𝑘𝑆 such that candidate is valid
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• If we found a candidate trajectory is valid,
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• Else, keep old committed trajectory.

Controller always tracks the last committed 
trajectory.

introduction :: gatekeeper :: perceivability :: conclusions



32

gatekeeper

gatekeeper provides recursive guarantee of safety

• for nonlinear dynamics

• for multiple constraints

• with inputs bounds

• possibly time-varying safe sets or dynamics

• partially known safe sets

• very low compute cost

• robust to disturbances and observer error

It does assume

• known backup controller and backup safe set

• known tracking controller

It does not assume:

• convexity of safe sets/dynamics

• nominal plan is dynamically feasible

introduction :: gatekeeper :: perceivability :: conclusions
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related approaches:

FASTER Backup filters

Tordesillas et al, TRO 2021. Singletary et al, RAL 2022

introduction :: gatekeeper :: perceivability :: conclusions
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related approaches:

FASTER Backup filters

Tordesillas et al, TRO 2021. Singletary et al, RAL 2022

Use MPC to simultaneously solve for both nominal 

trajectory and a backup trajectory.

But assumes linear dynamics and static convex safe 

sets (or SFCs) to maintain recursive feasibility.

introduction :: gatekeeper :: perceivability :: conclusions
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related approaches:

FASTER Backup filters

Tordesillas et al, TRO 2021. Singletary et al, RAL 2022

Use MPC to simultaneously solve for both nominal 

trajectory and a backup trajectory.

Forward propagates the backup controller. Mixes 

nominal and backup based on how close backup 

trajectory gets to unsafety.

But assumes linear dynamics and static convex safe 

sets (or SFCs) to maintain recursive feasibility.

Only checks safety of backup trajectory. Always mixing 

means nominal is never executed (even if it were safe).

introduction :: gatekeeper :: perceivability :: conclusions
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related approaches:

FASTER gatekeepeer Backup filters

Tordesillas et al, TRO 2021. Agrawal et al, TRO 2024. Singletary et al, RAL 2022

Use MPC to solve for both nominal 

trajectory and a backup trajectory 

simultaneously.

Track the nominal for as long as possible, 

before switching to backup.

Always track the last committed 

trajectory.

Forward propagates the backup 

controller. Mixes nominal and backup 

based on how close backup trajectory 

gets to unsafety.

introduction :: gatekeeper :: perceivability :: conclusions
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gatekeeper results:

• gatekeeper stays very close to the 

boundary, but stays safe

• Compared to FASTER:

• Lower compute time 

3 ms vs 78 ms

• Compared to Backup Filters:

• Closer to fire perimeter

• Travels at higher speeds

introduction :: gatekeeper :: perceivability :: conclusions
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gatekeeper experiments

introduction :: gatekeeper :: perceivability :: conclusions
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where have we gone from here?

introduction :: gatekeeper :: perceivability :: conclusions
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where have we gone from here?

1. Dev + AFRL: Multiagent Wez Avoidance

introduction :: gatekeeper :: perceivability :: conclusions

TopGun2
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where have we gone from here?

2. Kaleb: Persistent exploration algorithms1. Dev + AFRL: Multiagent Wez Avoidance 3. Daniel: Budget constrained planning

introduction :: gatekeeper :: perceivability :: conclusions
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closing the loop on safety guarantees:

Certified Perception:

Modified mapping algorithm to be robust to visual 

odometry drift.

Observer-Controllers:

Devised CBF-QP controllers to handle state 

estimation uncertainty.

introduction :: gatekeeper :: perceivability :: conclusions
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two main questions

How can we ensure safety constraints are 
not violated during operation?

What are the limits of the information 
gathering ability of robots?

introduction :: gatekeeper :: perceivability :: conclusions
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the information gathering problem

Southeast Austria weather data 

WegenerNet [1]
[1] Kirchengast et al. 2013

introduction :: gatekeeper :: perceivability :: conclusions
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the information gathering problem

[1] Kirchengast et al. 2013

Say we have a team of robots exploring this environment 

to collect information. 

How do we control the robots to collect the maximum 

quality of information efficiently?

What does efficiently mean? 

What does “quality of information” mean?

Can the robots collect the information in the first place?

(especially since the information itself is changing and the 

robots are moving)

What are fundamental limits of information gathering?

Southeast Austria weather data 

WegenerNet [1]

introduction :: gatekeeper :: perceivability :: conclusions
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quantifying information

robot state: 

𝑥 ∈ 𝒳 ⊂ ℝ𝑛

point 𝑝 ∈ 𝒟
with information 𝑚 ⊂ ℝ𝑑

Given a dynamical system, e.g.

a spatio-temporal environment model, e.g.

and a sensing model, e.g.:

design a controller 𝑢 ∶ 0, 𝑇  → 𝒰 to maximize quality of 

information collected

We need a definition for “quality of information collected”

robot state affects ability to measure 𝑚

introduction :: gatekeeper :: perceivability :: conclusions
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quantifying information: clarity

we need to quantify the quality of the information possessed, i.e., level of uncertainty about 𝑚

a point 𝑝 has 

information 𝑚 ∈ ℝ𝑑,  

modeled as a

 random variable

probability density function

Differential Entropy:
But:

ℎ 𝑚  ∈ [−∞, ∞]
can be negative,

perfect information as ℎ 𝑚  → −∞

introduction :: gatekeeper :: perceivability :: conclusions
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Kalman filtering and clarity

We can derive the clarity dynamics:

Since 𝑞 = 1/(1 + 𝑃), we have

Given a dynamical system, e.g.

a spatiotemporal environment model, e.g.

and a sensing model, e.g.:

Using the Kalman Filter to assimilate measurements: 

estimate has dynamics

stochasticity 

decreases clarity
measurements 

increase clarity
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Kalman filtering and clarity

We can derive the clarity dynamics:

Since 𝑞 = 1/(1 + 𝑃), we have

Given a dynamical system, e.g.

a spatiotemporal environment model, e.g.

and a sensing model, e.g.:

Using the Kalman Filter to assimilate measurements: 

estimate has dynamics

stochasticity 

decreases clarity
measurements 

increase clarity

Compare to Coverage Control [1-3]: 

where 𝑆, 𝛼 are tuned heuristically. 

[1] B. Haydon, et al. CDC 2021. 

[2] Panagou, et al. TCNS 2016. 

[3] Bentz, et al. Automatica 2019. 

Clarity dynamics capture the information 

collection mechanism based on the env. 

and sensing model.

introduction :: gatekeeper :: perceivability :: conclusions
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Dynamic CoveragePerceivability

maximizing information (i.e., clarity)

robot state: 

𝑥 ∈ 𝒳 ⊂ ℝ𝑛

point 𝑝 ∈ 𝒟
with information 𝑚 ⊂ ℝ𝑑

Given a dynamical system:

an environment model:

and a sensing model:

The clarity dynamics are

Construct an augmented system

Solve an optimal control problem to reach target clarity.

Define 𝑚 for each point in a spatial domain

Quantify the rate of increase of clarity based on 

robot locations

Design feedback controllers to maximize rate of 

increase of clarity

introduction :: gatekeeper :: perceivability :: conclusions
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perceivability

Perceivability depends on the 

- environment model

- the robot’s sensing capabilities and

- robot’s actuation capabilities

Perceivability is an optimal control problem 

that can be solved using reachability analysis 

(i.e., the HJB equations)

Once we have solved for 𝑉, it also gives the 

optimal controller as a feedback controller.

introduction :: gatekeeper :: perceivability :: conclusions
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ex: salinity measurements

Optimal strategy requires going through the sensing region 

many times, due to limited max speed

Solve the HJB PDE, and determine the perceivability domain

above green = target domain

above blue = perceivability domain 

introduction :: gatekeeper :: perceivability :: conclusions
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ex: salinity measurements

Single Integrator Dubin’s Boat

The perceivability of the environment depends on the robot’s actuation capabilities.

introduction :: gatekeeper :: perceivability :: conclusions
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Dynamic CoveragePerceivability

maximizing information

robot state: 

𝑥 ∈ 𝒳 ⊂ ℝ𝑛

point 𝑝 ∈ 𝒟
with information 𝑚 ⊂ ℝ𝑑

Given a dynamical system:

an environment model:

and a sensing model:

The clarity dynamics are

Construct an augmented system

Solve an optimal control problem to reach target clarity.

Define 𝑚 for each point in a spatial domain

Quantify the rate of increase of clarity based on 

robot locations

Design feedback controllers to maximize rate of 

increase of clarity

introduction :: gatekeeper :: perceivability :: conclusions
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multiagent dynamic coverage

Spatiotemporal 

Gaussian Process 

Kalman Filter

(STGPKF)

Coverage Controller

Coverage Controller

Coverage Controller

Clarity Map

𝑞 ∶ ℝ ×  ℝ𝑑

→ ℝ

Robot

Env Estimate Map
መ𝑓 ∶ ℝ ×  ℝ𝑑 → ℝ

Control

𝑢𝑖
Robot

Robot

Environment

𝑓 ∶ ℝ ×  ℝ𝑑 → ℝ

⋮ ⋮

Measurement

𝑦𝑖 = 𝑓 𝑡, 𝑥𝑖 + 𝑤𝑖

Robot State

𝑥𝑖

Model information to be collected as a GP

Convert GP into SDE model

Estimate information using a spatiotemporal KF

Quantify the clarity gain rate given robot locations

Design coverage controllers to maximize clarity

(two methods proposed)

introduction :: gatekeeper :: perceivability :: conclusions
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two coverage controllers
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where have we gone from here?

Kavin and Kaleb have run real-world experiments of this framework.

They have extended it to handle solar and battery constraints, the boat’s dynamics 

and target clarities that depend on the information collected so far.

Kaleb is extending the method to handle non-stationary GPs. 

Kavin is extending these ideas to try to quantify the information value of energy.

(real experimental data!)

introduction :: gatekeeper :: perceivability :: conclusions
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conclusions

How can we ensure safety constraints are 
not violated during operation?

What are the limits of the information 
gathering ability of robots?

introduction :: gatekeeper :: perceivability :: conclusions
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conclusions

• Why is designing safe autonomy hard?

“Information” flows 

left-to-right

“Constraints” flow 

right-to-left

Each module 

computes quantities 

used by downstream 

modules

To guarantee safety 

the downstream 

modules impose 

constraints on the 

upstream modules

Flow of Information

Flow of Constraints

introduction :: gatekeeper :: perceivability :: conclusions
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conclusions

• Why is designing safe autonomy hard?

• Flow of “safety constraints” is not well understood 
Often “tacked on” rather than a core part of the design of 
autonomous systems

• Resilience vs robustness

• “Mission requirements” is often implemented for a specific 
situation, and general mathematical frameworks are 
cumbersome/complicated

Flow of Information

Flow of Constraints

introduction :: gatekeeper :: perceivability :: conclusions
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conclusions

• Why is designing safe autonomy hard?

• Flow of “safety constraints” is not well understood 
Often “tacked on” rather than a core part of the design of 
autonomous systems

• Resilience vs robustness

• “Mission requirements” is often implemented for a specific 
situation, and general mathematical frameworks are 
cumbersome/complicated

• What will we need going forward?

• How to handle stochasticity?

• Better understanding of the limits of our sensors

• Better integration of perception with planning/controls

Mark Rober, 2025
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64

conclusions

• Why is designing safe autonomy hard?

• Flow of “safety constraints” is not well understood 
Often “tacked on” rather than a core part of the design of 
autonomous systems

• Resilience vs robustness

• “Mission requirements” is often implemented for a specific 
situation, and general mathematical frameworks are 
cumbersome/complicated

• What will we need going forward?

• How to handle stochasticity?

• Better understanding of the limits of our sensors

• Better integration of perception with planning/controls

• More abstract tools for mission requirements and interactions 
between multiagent systems

Flow of Information

Flow of Constraints

introduction :: gatekeeper :: perceivability :: conclusions
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(notation)

Algorithm

dynamics:

(unknown) safe set:

perceived safe set: 

nominal trajectory:

candidate trajectory:

          

      

        

           

       

       

        

          

       

          

                  

          

    

    

 
       

 
         

          

      

        

           

       

       

        

          

                  

          

    

    

 
       

committed trajectory:

controlled-inv. set: 

Gatekeeper, IROS 2023

See the paper for the full proof and algorithm description.

Small modification to “isValid” needed to robustify against disturbances.
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Clarity: useful properties

Clarity lower-bounds the expected estimation error:
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Perceivability as a reachability problem
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Perceivability as a reachability problem

To summarize:

Given a robot model, env model, the 

clarity dynamics are well defined. 

We can solve the HJB PDE for the 

value function 𝑉(𝑡, 𝑥, 𝑞)

Super-level sets of V determine the 

perceivability domain

Value function determines the optimal 

controller.
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