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two main questions

How can we ensure safety constraints are What are the limits of the information
not violated during operation? gathering ability of robots?

Part 1: gatekeeper Part 2: Clarity and Perceivability
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why do we want safety?

Why do you choose to use the lift?




why do we want safety?
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Why do you choose to use the lift?

Otis’ lift had a built-in safety mechanism:
when the cable is severed, a leaf-spring is
released, and it grabs onto the lift shatt.

How does this extend to modern autonomous
systems?

Elisha Otis, 1854
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what are safety guarantees?

Time: 0.0 minutes

y [km]
& g &

0.0
x [kml

Ex. 2: Firewatch Mission

Ex. 1: Subterranean Navigation

Navigate through the caves to
get a goal location.
Could be teleoperated or fully
autonomous.

Fly along the fire perimeter.
The helicopter's GPS trace will
used to allocate firefighting
resources later.
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what are safety guarantees?

Time: 0.0 minutes

y [km]
& g &

0.0
x [kml

Ex. 2: Firewatch Mission

Ex. 1: Subterranean Navigation
obstacle avoidance

We want to ensure safety, helicopter doesn’t enter the fire
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what are safety guarantees?

Ex. 1: Subterranean Navigation

We want to ensure safety,

obstacle avoidance

subject to dynamics and input quadrotor dynamics

constraints,

while completing the mission,

max speed of each motor

navigate to a target location

and being robust to disturbances wind, ground-effect, GPS-denied...

and uncertainties

introduction

Time: 0.0 minutes

y [km]

Ex. 2: Firewatch Mission
helicopter doesn’t enter the fire

helicopter dynamics
max engine thrust and max roll angle

map the boundary of the fires

unknown fire spread rate, ...

We want a mathematical guarantee that the robot will not

become unsafe/behave unexpectedly.




how do we build (safe) autonomy?

o . Time: 0.0 minutes Mission Safety
raguiramenls requirarmants
25 . l .
o ,
i i
€
ﬁ 0.0 r
> — Autonomy Stack —
-5 |
e e
=5.0 . L ]
-5.0 —-2.5 0.0 2.5 5.0 Eﬂ'n'lfﬁﬂl'l"lﬂﬁ[
x [km]
Senszor Data Robot +———— Control Inputs ——
The “autonomy stack” consists of many modules.
The only interface to the robot is the control input and the sensor output.
M introduction




how do we build (safe) autonomy?

o . Time: 0.0 minutes Mission Safety
raguiramenls requirarmants
25 r . l‘ L .
.'f x"‘.
£ ol P rception | | Plan | Controll
> | a near 0n ar
7| {Ch4) " [cha " (ch2)
-5 |
l'\q_\_\_ i
Autonomy Slack
=5.0 . L ]
-5.0 —-2.5 0.0 2.5 5.0 Eﬂ'n'lfﬁﬂl'l"lﬂﬁ[
x [km]
Perception: Estimate robot’s state Sensor Data ——————— Robot +——— Control Inputs ——
Estimate fire map
Planner: Plan trajectories around fire perimeter
Controller: Compute control inputs to track the The * o _ ¢ dul
planned trajectory e “autonomy stack” consists of many modules.
The only interface to the robot is the control input and the sensor output.
M introduction
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formalizing the notion of safety

Domain X ¢ R"

Robot

introduction

Consider a dynamical system

T = f(z,u)
state: x €¢ X C R" control input: ©w e d C R™

subject to constraints of the form

ze8S={x:hi(x)>0ho(x) >0,..}
| |
ex: avoid the walls, stay out of the fire

Goal is to ensure the closed-loop system satisfies

fL’(t) eSS Vit>t.
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ways to achieve safety:

filter the controller

Missian Safety
raguiramenls requirarmants
o Time: 0.0 minutes l l
.'fd_ H"'.
1 | Perception Plannar Controller
7 (Ch4) " (ch3 (Ch 2)
E 00 | #
| l""\,\_\_\_ 4
Q\uﬁ Autonomy Stack
B Environment
oo | | . . Senszor Data Robot +———— Control Inputs ——
-5.0 —-2.5 . F)kt:’n] 2.5 5.0
Since the control inputs determine the future trajectory,
(and hence safety) can we “filter” the controller?
M introduction
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safety through filtering control inputs

Domain X ¢ R"

introduction

Consider a (control-affine) dynamical system

z = f(x) + g(x)u

with safety constraint x(t) € S Vit > ty.

Suppose we can find h : X — R,
such that

C={z:h(z)>0}CS.

If his a CBF [1], then mepp : X — U (defined in
|1]) ensures

z(tg) € C = x(t) e C Vt > tp.
Therefore mcgy is a safe controller.

But finding a CBF is hard.

[1] Ames etal. TAC 2017.
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ways to achieve safety:

Time: 0.0 minutes
50
25 F
E
2 00 |
=2
KQ“
...25 - .
-5.0 1 1 I 1
-5.0 —-2.5 0.0 2.5 5.0
x [kml
M introduction

constrain the planner

Mission
raguiramenls

filter the controller

Safety
requirarmants

|

f \ 3
| Perception Plannar Controller
7 (ch4) (Ch 3) ’

{Ch 2)

Sensor Data

Autonomy Slack

Ernvirarmant

Robot +———— Control Inputs ——

What if we made the safety constraints explicitly

part of the planner?
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safety through constraints in planner

Path Planning

20
)

EX. RRT*, A%, ... EX.

+ can handle complex and dynamic +
environments

- different models used by planner -
and controller leads to problems

introduction

Model Predictive Control

x
t<—— predict——

Nonlinear-MPC, MPPI, ...

considers future behavior of robot
and environment

need to ensure recursive feasibility
and stability

can be computationally challenging
In nonconvex cases

15




. Control Barrier Functions
many ways to achieve safety:

Constrained Planners

Missian

Safety
raguiramenls requirarmants
o - Time: 0.0 minutes .-’fd_
_ | Perception Plannar Controller
a5 | | , 7| {Ch4) (Ch 3) chzy @
E 0.0 F | l'\"-h_ d
- yl : Autonomy Stack
Kq ’ Ernviranmant
Senszor Data Robot +———— Control Inputs ——
-5.0 -2.5 . F)kt:n] 2.5 5.0
How does a human achieve this complex mission?
By thinking about contingencies/fail-safes/backups.
M introduction
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perspective shift:

Time: 0.0 minutes
50 r

Instead of checking that a controller is safe for all initial states,

Design a controller 7 : X — U and C C & such that

25 |

x(tg) € C = x(t) € C Vt > ty.

0.0 F

y [km]

What if we ensured that there exists a way to be safe from the current state?
N

=25 F

Ensure there exists a safe trajectory p : [tg,00) = X
from the current state:

-5.0 :
-5.0 -25

0.0 2.5
x [km]

5.0

Hp(t) e SVt> to, p(to) = Jf(t())

Can we do this without compromising on the mission objectives?

It
Sensor

Diaka *  Perception » Planner

erﬂlar =- niﬂ::fll
- | ' | ' gatekeeper W,
M gatekeeper
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gatekeeper Ensure there exists a safe trajectory p : [tg,00) — X

from the current state:

{ —0.00s (— ) S dp(t) € SVt > tg, p(to) = x(to)

o prom S(t) is the full safe set. Unknown, time-varying.

L4

Pid B (t) is the perceived safe set. Known, time-varying.

o Safaty
Missian Raguiraments
Requiramants l

/ F‘-u'caimd 1
nsor | Mominal | Commithad Tracking Cantral
Perception }—- Planner -_— p—n-;-_" gatekeepe Trmmq—!' Controllar gt

/ _ ] J

=
N

/ At the k-th iteration of gatekeeper,

O
/ = Construct pi?", a candidate trajectory.

= Check if pi?" is valid.

» |If valid, update the committed trajectory.

: safe set : obstacles By : perceived safe set .: backup set _ )
-+ nominal traj — candidate traj — committed traj  Controller tracks the last committed trajectory.

gatekeeper 18




gatekeeper
t = 0.00s (= ty) S
) o
7
7~
7
/
B, /
/
/
Fe
[
tul

: safe set : obstacles By : perceived safe set

== nominal traj == candidate traj

.: backup set

= committed traj

gatekeeper

Ensure there exists a safe trajectory p : [tg,00) — X
from the current state:

dp(t) € SVt > to, p(to) = x(to)

Core idea:

pn(t) € S(t) V>t
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gatekeeper Ensure there exists a safe trajectory p : [tg,00) — X

from the current state:

{ —0.00s (— ) S dp(t) € SVt > tg, p(to) = x(to)

0 pﬂ.(;‘n'i-
e Core idea:

d |
PP (t) € S(t) Vit >ty '

— {p;;an(t) e S(t) ifte [tr,ten).

5, // psn(t) € S(t) if t € [tpp, 00)
/
/
Fe
[
tUl

: safe set : obstacles By : perceived safe set .: backup set

== nominal traj == candidate traj = cOmmitted traj

gatekeeper 20




gatekeeper Ensure there exists a safe trajectory p : [tg,00) — X

from the current state:

{ —0.00s (— ) S dp(t) € SVt > tg, p(to) = x(to)
0 p TLOTH.
7 Core idea:
s
Py (t) € S(t) YVt =1t
) — pgz(t} c S(t) ?f t € [ty tkB),
B, y, pPn(t) e S(t) if t € [tpp, o)
// L) € Be(®) if t € [ty tkp),
/ ? P (tkB) € Ci(trB)
[ O
tul

: safe set : obstacles By : perceived safe set .: backup set

== nominal traj == candidate traj = cOmmitted traj

gatekeeper 21




gatekeeper
t = 0.00s (= 1) S
) o
7
7~
7
/
B, /
/
/@
/ e, )
[
tul

: safe set : obstacles By : perceived safe set

== nominal traj == candidate traj

.: backup set

= committed traj

gatekeeper

Ensure there exists a safe trajectory p : [tg,00) — X
from the current state:

dp(t) € SVt > to, p(to) = x(to)

Core idea:
pzan(t) c S(t) Vit 2 tk
. ) eS(t) ift € [t tip).
p%an(t) c S(t) if t € [tha OO)

if t € [tk,th),

If pi@" is valid, make it a committed trajectory.

Controller tracks the last committed trajectory.
Recursive guarantee of safety.
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gatekeeper Ensure there exists a safe trajectory p : [tg,00) — X

from the current state:

{ —0.00s (— ) S dp(t) € SVt > tg, p(to) = x(to)
Y ﬁ 'y  Step 1: Identify C,
e
/
B, /
/
/@
/ e, o
[
a

: safe set : obstacles By : perceived safe set .: backup set

== nominal traj == candidate traj = cOmmitted traj

gatekeeper 23




gatekeeper Ensure there exists a safe trajectory p : [tg,00) — X

from the current state:

s S dp(t) € SVt > to, p(to) = z(to)
0 ﬁ'v: * Step 1: ldentify Cy
-  Step 2: Construct a candidate trajectory
* Choose a switch time tyg
* Forward propagate tracking nominal until t;¢
” / * Forward propagate backup controller until t; g
4 // * Choose largest t;s such that candidate is valid
/@
/ e,
O
A
o}

: safe set : obstacles By : perceived safe set .: backup set

== nominal traj == candidate traj = cOmmitted traj

gatekeeper
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gatekeeper Ensure there exists a safe trajectory p : [tg,00) — X

from the current state:

t =0.00s (= ty) S Elp(t) c S \v/t Z tO) p(tO) — ﬂ?(to)
0 ﬁ'v: « Step 1: Identify C,
-  Step 2: Construct a candidate trajectory
* Choose a switch time tyg
* Forward propagate tracking nominal until ¢;¢
/ * Forward propagate backup controller until t; g
%o 4 * Choose largest t;s such that candidate is valid
« Step 3: Update committed trajectory
e * If we found a candidate trajectory is valid,
2 O replace committed trajectory.
t, * Else, keep old committed trajectory.

: safe set : obstacles By : perceived safe set .: backup set

== nominal traj == candidate traj = cOmmitted traj

gatekeeper 25




gatekeeper Ensure there exists a safe trajectory p : [tg,00) — X

from the current state:

t — 0.00s S Hp(t) cS Vt > 1o, p(to) — x(tﬂ)
Y ﬁ 'y  Step 1: Identify C,
7 « Step 2: Construct a candidate trajectory

* Choose a switch time tyg
* Forward propagate tracking nominal until ¢;¢
/ * Forward propagate backup controller until t; g
4 * Choose largest t;s such that candidate is valid

« Step 3: Update committed trajectory

* |f we found a candidate trajectory is valid,
O replace committed trajectory.

t, * Else, keep old committed trajectory.

Controller always tracks the last committed
: safe set : obstacles By : perceived safe set .: backup set trajectory.

== nominal traj == candidate traj = cOmmitted traj
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gatekeeper Ensure there exists a safe trajectory p : [tg,00) — X

from the current state:

{—0.70s (— 1) S dp(t) € SVt > to, p(to) = x(to)
Y ﬁ 'y  Step 1: Identify C,
- < Step 2: Construct a candidate trajectory
B, .

Choose a switch time tyg
* Forward propagate tracking nominal until ¢;¢
* Forward propagate backup controller until t; g

/ * Choose largest t;s such that candidate is valid
t « Step 3: Update committed trajectory
* |f we found a candidate trajectory is valid,
replace committed trajectory.
t, * Else, keep old committed trajectory.

Controller always tracks the last committed
: safe set : obstacles By : perceived safe set .: backup set trajectory.

== nominal traj == candidate traj = cOmmitted traj
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gatekeeper Ensure there exists a safe trajectory p : [tg,00) — X

from the current state:

{—0.70s (— 1) S dp(t) € SVt > to, p(to) = x(to)
Y ﬁ 'y  Step 1: Identify C,
- < Step 2: Construct a candidate trajectory
B, .

Choose a switch time tyg
* Forward propagate tracking nominal until ¢;¢
* Forward propagate backup controller until t; g

/ * Choose largest t;s such that candidate is valid
5118 « Step 3: Update committed trajectory
* |f we found a candidate trajectory is valid,
replace committed trajectory.
t, * Else, keep old committed trajectory.

Controller always tracks the last committed
: safe set : obstacles By : perceived safe set .: backup set trajectory.

== nominal traj == candidate traj = cOmmitted traj
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gatekeeper Ensure there exists a safe trajectory p : [tg,00) — X

from the current state:

'~ 0.70s S Ip(t) € SVt >to, plto) = x(to)
Y ﬁ 'y « Step 1: Identify Cy
- < Step 2: Construct a candidate trajectory

* Choose a switch time tyg

* Forward propagate tracking nominal until ¢;¢

* Forward propagate backup controller until t; g
* Choose largest t;s such that candidate is valid

t, * Step 3: Update committed trajectory

/ * |f we found a candidate trajectory is valid,
replace committed trajectory.

* Else, keep old committed trajectory.

[
tul

Controller always tracks the last committed
: safe set : obstacles By : perceived safe set .: backup set trajectory.

== nominal traj == candidate traj = cOmmitted traj

gatekeeper 29




gatekeeper Ensure there exists a safe trajectory p : [tg,00) — X

from the current state:

2 dp(t) € SVt > to, plto) = z(to)

'y * Step 1: ldentify Cy
« Step 2: Construct a candidate trajectory
* Choose a switch time tyg
* Forward propagate tracking nominal until ¢;¢
* Forward propagate backup controller until t; g
* Choose largest t;s such that candidate is valid

« Step 3: Update committed trajectory

* |f we found a candidate trajectory is valid,
replace committed trajectory.

* Else, keep old committed trajectory.

Controller always tracks the last committed
: safe set : obstacles By : perceived safe set .: backup set trajectory.

== nominal traj = candidate traj = committed traj

gatekeeper 30




gatekeeper

t = 1.40s S

nom

.: backup set

= committed traj

: safe set

== nominal traj

: obstacles By : perceived safe set
= candidate traj

gatekeeper

Ensure there exists a safe trajectory p : [tg,00) — X
from the current state:

Hp(t) eSVt> to, p(to) = x(tg)

* Step 1: ldentify Cy

« Step 2: Construct a candidate trajectory
* Choose a switch time tyg
* Forward propagate tracking nominal until ¢;¢
* Forward propagate backup controller until t; g
* Choose largest t;s such that candidate is valid

« Step 3: Update committed trajectory

* |f we found a candidate trajectory is valid,
replace committed trajectory.

* Else, keep old committed trajectory.

Controller always tracks the last committed
trajectory.
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gatekeeper Ensure there exists a safe trajectory p : [tg,00) — X

from the current state:

t =2.10s (= t3) S

Hp(t) eSVt> to, p(to) = x(tg)

nom

gatekeeper provides recursive guarantee of safety

p
P 7
7 e for nonlinear dynamics
. * for multiple constraints
¢, * with inputs bounds

* possibly time-varying safe sets or dynamics
* partially known safe sets

* very low compute cost

* robustto disturbances and observer error

It does assume
* known backup controller and backup safe set
* known tracking controller

It does not assume:

e convexity of safe sets/dynamics
 nominal plan is dynamically feasible

: safe set : obstacles By : perceived safe set .: backup set

===x nominal traj = candidate traj = committed traj

gatekeeper 32




related approaches:

FASTER Backup filters
Tordesillas et al, TRO 2021. Singletary et al, RAL 2022

o Contrgl
Iapul

Sensor -
Oiata

*  Perception » Planner *»  Controller

M gatekeeper 34




related approaches:

FASTER Backup filters
Tordesillas et al, TRO 2021. Singletary et al, RAL 2022

Use MPC to simultaneously solve for both nominal
trajectory and a backup trajectory.

But assumes linear dynamics and static convex safe
sets (or SFCs) to maintain recursive feasibility.

. Control

Sensor o 1 - -
Dt *  Perception »> Planner *  Controller * ot

M gatekeeper 35




related approaches:

FASTER Backup filters

Tordesillas et al, TRO 2021. Singletary et al, RAL 2022

Use MPC to simultaneously solve for both nominal Forward propagates the backup controller. Mixes

trajectory and a backup trajectory. nominal and backup based on how close backup
trajectory gets to unsafety.

But assumes linear dynamics and static convex safe Only checks safety of backup trajectory. Always mixing

sets (or SFCs) to maintain recursive feasibility. means nominal is never executed (even if it were safe).

Py . Conirol

Sensor - 1 - -
Dt *  Perception » Planner *»  Controller O *
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related approaches:

FASTER gatekeepeer Backup filters

Tordesillas et al, TRO 2021. Agrawal et al, TRO 2024. Singletary et al, RAL 2022

Use MPC to solve for both nominal Track the nominal for as long as possible, Forward propagates the backup

trajectory and a backup trajectory before switching to backup. controller. Mixes nominal and backup

simultaneously. Always track the last committed based on how close backup trajectory
trajectory. gets to unsafety.

Sensor - ; - = »
Diaka *  Perception » Planner *»  Controller O *

M gatekeeper 37




gatekeeper results:

Time: 0.0 minutes

50 r 05 r
0.4
| E 7T » gatekeeper stays very close to the
g boundary, but stays safe
(=]
t @
= 7 | « Compared to FASTER:
0o  Lower compute time
3msvs /8 ms
e o 10 20 20 20 50
Ti [min] .
o « Compared to Backup Filters:
——FASTER . .
Ny | | — Gatekbeper. * Closer to fire perimeter
-0 “23 . 25 50 * Travels at higher speeds
Distance to Fire [km] Velocity [m/s] Comp. time [ms]
Minimum Mean Std. Mean Std. Median IQR
Target >0 0.100 - 15.0 - - -
Nominal Planner 0.032 0098 0032 1514 073 2732 437
FASTER [14] 0.040 0101 0030 12.60 2.08 20.64
Backup Filters [15] 0.081 [0240] 0054 1011 352 03X 0.05
Gatekeeper (proposed) 0.049 [0.108] 0034 1491 135 0.11
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gatekeeper experiments

gatekeeper

ROBOTICS

gatekeeper:

Online Safety Verification and Control
for Nonlinear Systems in Dynamic Environments

Devansh R Agrawal, Ruichang Chen, Dimitra Panagou
University of Michigan, DASC Lab

IEEE T-RO 2024

39



Percaived
| Safe Set l
p , =
Sensar = i B __ Homira atekeeper | Commied Tracking Gantral
Diata b L] il Trajecsany g per Trajactary Controller Irput
p. - .\_ _I.

. /
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where have we gone from here?
Raqqumnls l .

Pacahved
| Safe Set 1
I . Fa oy r -
Sansar . " __ Homira _ | Committed Tracking Gantral
Data Perception Flanner Trajocsory ] gatekeeper Trajoctary 7] Controller It

gatekeeper Trajectories

0.75
0.50
0.25
">
0.00 + .
-~ —
L

L I I L L I
—0.25 0.00 0.25 0.50 0.75 1.00 1.25

1. Dev + AFRL: Multiagent Wez Avoidance

TopGun2
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where have we gone from here?

Misgian Raguiraments
Requiramants l
Parcaived
| Safe Set 1
o \ \
Sansar . " __ Homira _ | Committed Tracking Gantral
Data Perception Flanner Trajocsory ] gatekeeper Trajoctary 7] Controller It
-~ L F b

gatekeeper Trajectories

1.00

0.75

0.530

0.25

0.00

1. Dev + AFRL: Multiagent Wez Avoidance 2. Kaleb: Persistent exploration algorithms 3. Daniel: Budget constrained planning
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closing the loop on safety guarantees:

Baseline CBF
Controller
7 /f .

Certified Perception: Observer-Controllers:

Modified mapping algorithm to be robust to visual Devised CBF-QP controllers to handle state
odometry drift. estimation uncertainty.

ngj’ ( * Perception - Planner *  Controller W d nﬁ::l:i"
b A

M gatekeeper 43




two main questions

How can we ensure safety constraints are What are the limits of the information
not violated during operation? gathering ability of robots?

M perceivability 44




the information gathering problem

(a) 2 4 6 8 10 12 14 16 715 GFDL CM 24

ol g S
- ,: GSRIEE @
O ag 1 0BS
S e o 3
© | );" 1y At ol B <
-+ - A X L >
5! !
| ' N
3 Pl = O\
} \ N
g
24 6 8 10 12 14 16 18 \\
(b) FFB
> 15.8°E 15.9°E 16.0°E &
o - - = (=}
o [*1Te Lt Ale [® - s St B
L
o . wiie |® | e Aq_’i . f A ° 0"
P e o O O A 2 - .
T o7 s Al | L g
e |e ® ° L 450|946 iy 9 o 190(1‘2,(; 304 31 328 339 350 363 375
> - W S
2 oo 7% e | iol® |® |0 | ol 2]y
X v | elw il |o{mma |o |o Al Bz
= R B O P e B S o R Y S G
ol e = == ey
S IFS:! 6d | o Nlas o | of® L of o|p o f Z
i [ - 1 v’ ’ Fipoe|e "’LQV b
N el @ P ”‘. PO sl ) B Y E
15.8°E 15.9°E 16.0°E
i (map source: openstreetmap.org)
WegenerNet station types: [ ] WegenerNet station grid
e base station #% ZAMG station
A special base station # LINET station w+e
w primary station 012 5 Kilometer
m reference station S - . S

Southeast Austria weather data

WegenerNet [1] [1] Kirchengast et al. 2013
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the information gathering problem

(3) 2ot 68 1012 14 gl6 18

SR T L Say we have a team of robots exploring this environment

ey Gam LR to collect information.

L
£41 S A""?_J"

!
-

8y

o

44
by

How do we control the robots to collect the maximum

(b) ??f 4. R ] quality of information efficiently?
What does efficiently mean?
What does “quality of information” mean?

.. Can the robots collect the information in the first place?
. —_— (especially since the information itself is changing and the

WegenerNet station types: [ ] WegenerNet station grid

e base station % ZAMG station ro bOtS a re mOV| ng)
A spgcial base'station # LINET station . w+E . . . . .
o e s B 012  Sometr | What are fundamental limits of information gathering?

Southeast Austria weather data
WegenerNet [1]

M perceivability

[1] Kirchengast et al. 2013
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quantifying information

Given a dynamical system, e.g.

= f(xz,u) reX CR"  ueld CR™
robot state: a spatio-temporal environment model, e.g.
/ x €EX cR? N
m = w(t w(t) ~ 0,
(t) (t) (0,Q)
O pointp €D and a sensing model, e.g.:
with information m c R%
y = C(x)m + v(t) v(t) ~ N(0, R(x))
A A

robot state affects ability to measure m

design a controller u : [0, T] — U to maximize quality of
information collected

We need a definition for “quality of information collected”

M perceivability a7




quantifying information: clarity

we need to quantify the quality of the information possessed, i.e., level of uncertainty about m

Differential Entropy: But:

w1 . hlm] € [—oo, ]
hlm] = [E|—log f(m)] can be negative,

perfect information as h[m] - —oo

probability density function

Def: The clarity of a d-dimensional continuous
random variable m with differential entropy h[m] is

/
a point p has

information m € R, ) e
modeled as a ] . g2hlm] \ — osl
i m| = —+ Tl
random variable q (2mwe)d z 06
S 04f
For X ~ N (u,X), 02t
0.0 i‘ ‘ ‘ ‘ ‘ - .
1 -2 -1 0 1 2 3 4 5

Differential Entropy

48
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Kalman filtering and clarity

Given a dynamical system, e.g.

T = f(x,u)

a spatiotemporal environment model, e.g.
m = w(t)

and a sensing model, e.g.:

y = C(x)m + v(t)

Using the Kalman Filter to assimilate measurements
estimate has dynamics
fr=PC(x)R(z)" ' (y — C(a)p)

)
5 _ _C(m)Q 2
P=qQ R(x>P

perceivability

Clarity

1.0 —

We can derive the clarity dynamics:
Since g = 1/(1 + P), we have

0(5’7)2 2 2
= 1 — _

=R (I-q)"|-|Qq
measurements
increase clarity

stochasticity
decreases clarity

10

Time

49




Kalman filtering and clarity

Given a dynamical system, e.g.
T = f(x,u)
a spatiotemporal environment model, e.g.

m = w(t)

and a sensing model, e.g.:

y = C(x)m + v(t)

Using the Kalman Filter to assimilate measurements:

estimate has dynamics

fo=PC(2)R(z)"(y — C(z)p)
S5 C(x)? 2
P=qQ R(x) P

[1] B. Haydon, et al. CDC 2021.
[2] Panagou, et al. TCNS 2016.
[3] Bentz, et al. Automatica 2019.

perceivability

We can derive the clarity dynamics:
Since g = 1/(1 + P), we have

C(z)” 2 2

measurements  Sstochasticity
increase clarity =~ decreases clarity

q=

Compare to Coverage Control [1-3]:
g =|5(z)(1 —q)|—|ag

where S, a are tuned heuristically.

Clarity dynamics capture the information
collection mechanism based on the env.
and sensing model.
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maximizing information (i.e., clarity)

robot state: - _
/ X EX CR" Given a dynamical system: = f(x,u)
an environment model: m = w(t)
O ooint p € D and a sensing model: y = C(z)m + (1)
ith inf i R4 _ _ . O(2)?
with information m The clarity dynamics are q= ) (1-9)%—Qq¢°
R(x)
Perceivability Dynamic Coverage
Construct an augmented system Define m for each point in a spatial domain
L= f(x’zw Quantify the rate of increase of clarity based on
. C(x)” o 9 2 robot locations
q= (1-9)" —Qq
R(x)
Design feedback controllers to maximize rate of
Solve an optimal control problem to reach target clarity. increase of clarity

M perceivability 51




perceivability

Definition:

A quantity m € R is perceivable

to a level ¢* Perceivability depends on the

- environment model

- the robot’s sensing capabilities and

if there exists a controller . -
- robot’s actuation capabilities

s.t. q(to +71') > q*.

Theorem:
Define

V(t07 L0, QO) = mnax Q(t() =+ T)

TeLU) Perceivability is an optimal control problem

. that can be solved using reachability analysis
st. &= f(z,u), x(lo)= o, (i.e., the HJB equations)

q — (j(:C,’LL, Q)a Q(tO) — q0o-
Once we have solved for V, it also gives the
i.e., the maximum clarity reachable. optimal controller as a feedback controller.

m is perceivable if V(ty,x0,q0) > q*.
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ex: salinity measurements

Sensing Region

3 ~ 9m/s
e . = . T T e e = = = = 1.6m/s
L _ ~ 4 3m/s
=z N
> 0 0om/s
‘ ' ~—= Ocean Current
: /D — Single Integrator -
Start-
_3 | ! 0 m/S
-3 0 3
X [m]

perceivability

ug,uy € [—2,2] m/s

Optimal strategy requires going through the sensing region
many times, due to limited max speed

Solve the HJB PDE, and determine the perceivability domain

_\
o

Initial Clarity

0
y [m]

Target
q(T)>0.7

e

above green = target domain

above blue = perceivability domain
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ex: salinity measurements

Sensing Region Q) Clarity against Time
37— —T— - . // - — T = 9m/s 3= — — — -
D D I o 0.8
I i I I I Target Clarity = 0.7 aun
S 71/‘:7""\7‘ | o - 0.6 r
r -\~ ~— — 13m/s r -
£ £
: 0 r . : : . . : ' +0 m/s > 0 [ % O 4
—= Ocean Current — Ocean Current 0.2
H — Single Integrator - == Dubin’s Boat I — Single Integrator|
— Dubin’s Boat
-3 : ' : : : - om/s -3 ‘ ‘ J ‘ ‘ 0 : . ' ] : : : : ‘
-3 0 3 -3 0 3 0 2 4 6 8 10
x [m] x [m] Time [s]
Single Integrator Dubin’s Boat
The perceivability of the environment depends on the robot’s actuation capabilities.
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maximizing information

robot state:

/ X EX CR" Given a dynamical system: = f(x,u)
an environment model: m = w(t)
O ooint p € D and a sensing model: y = C(z)m + (1)
ith informati R? . . . C(x)?
with Information m The clarity dynamics are §= (z) (1—-¢q)* — Q¢
R(x)
Perceivability Dynamic Coverage
Construct an augmented system Define m for each point in a spatial domain
L= f(x’zw Quantify the rate of increase of clarity based on
. C(x)” o 9 2 robot locations
q= (1-9)" —Qq
R(x)
Design feedback controllers to maximize rate of
Solve an optimal control problem to reach target clarity. increase of clarity
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multiagent dynamic coverage

Wind Speed and Direction 00:00
u'\/t Py :\ S\ TN TS X Robot State Measurement

< X Environment yi = f(t,x) +w;
f:R x RY{>R
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Control Clarity Map Spatiotemporal
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Coverage Controller

Model information to be collected as a GP c .

_ nv Estimate Map
Convert GP into SDE model Ff:R x RY >R
Estimate information using a spatiotemporal KF
Quantify the clarity gain rate given robot locations
Design coverage controllers to maximize clarity
(two methods proposed)
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two coverage controllers

True Wind Speed Est Wind Speed Clarity Trajectories after 1 hour

WX [2023-01-01100:00:00]
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where have we gone from here?

Kavin and Kaleb have run real-world experiments of this framework.
They have extended it to handle solar and battery constraints, the boat’s dynamics
and target clarities that depend on the information collected so far.

Time: 20241115 _12-38- 298 298001

Estimate [m/s] Clarity
0
; 02
15 5 1.5 #
— — 0.7
£ 10 ¢ £ o 6
— — 0.4
> 05 2 > 05 0.3
1 0.2
0.0 t! 0 0.0 : 8t

0.0 0.5 1.0 1.5 0.0 0.5 1.0 15
X [km] X [km]
Target Clarity Clarity Deficit

[km]
[km]

0 i}
g 9
8 8
7 7
7] B
5 5
4 i
3 3
2 2
1 1

1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0

1
0
0
0
0
0.
0
0.
0
0.
0

0.0 05 1.0 15 0.0 05 10 15
X [km] x [km]

(real experimental data!)

Kaleb is extending the method to handle non-stationary GPs.
Kavin is extending these ideas to try to quantify the information value of energy.
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conclusions

How can we ensure safety constraints are What are the limits of the information
not violated during operation? gathering ability of robots?
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conclusions

* Why is designing safe autonomy hard?

Missian Safaly
raguiraments requiraments
“Information” flows e l l “Constraints” flow
eftto-right [ lowotinformation o ) right to-left
Each module N[ T ' To guarantee safety
. _ |, Perceplion Planner Controller | |
computes quantities (Ch 4) (Ch 3) (Ch 2) the downstream
used by downstream —_— modules impose
modules N Flow of Constraints J constraints on the
Astonomy Stack upstream modules

Ernviranmanit

Sanszor Data Robot #———— Caontrol Inputs ——
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M conclusions

conclusions

* Why is designing safe autonomy hard?

* Flow of “safety constraints” is not well understood
Often “tacked on” rather than a core part of the design of
autonomous systems

e Resilience vs robustness

“Mission requirements” is often implemented for a specific
situation, and general mathematical frameworks are
cumbersome/complicated

Mission Salety

raguirameants requiramants
|
4 Fllow of Information I ™
e o H e
M Flow of Constraints

Autonomy Slack

Enviranmant

Robot +——— Control Inputs ——

Sensor Data
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Mission Salety

co n CI us‘ O ns raguirameants requiramants
o | |
* Why is designing safe autonomy hard? I Flow of Information
* Flow of “safety constraints” is not well understood ,. L ~ <
Often “tacked on” rather than a core part of the design of 1 M 1 om [ Seer
autonomous systems - )
* Resilience vs robustness \_ Flow of Constraints
* “Mission requirements” is often implemented for a specific Autonomy Stack
situation, and general mathematical frameworks are Environment
cumbersome/complicated

Sansor Data Robot +——— Control Inputs ——

*  What will we need going forward?
 How to handle stochasticity?
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conclusions

* Why is designing safe autonomy hard?

* Flow of “safety constraints” is not well understood
Often “tacked on” rather than a core part of the design of
autonomous systems

« Resilience vs robustness

« “Mission requirements” is often implemented for a specific
situation, and general mathematical frameworks are
cumbersome/complicated

*  What will we need going forward?
 How to handle stochasticity?
* Better understanding of the limits of our sensors
» Better integration of perception with planning/controls

conclusions

Mark Rober, 2025



Mission Salety

co n CI USi O ns raguirameants requiramants
o | |
* Why is designing safe autonomy hard? I Flow of Information
* Flow of “safety constraints” is not well understood ,. . ~ b
Often “tacked on” rather than a core part of the design of 1 M 1 om [ Seer
autonomous systems \ J )
* Resilience vs robustness \_ Flow of Constraints
* “Mission requirements” is often implemented for a specific Autonomy Stack
situation, and general mathematical frameworks are Environment
cumbersome/complicated

Sansor Data Robot +——— Control Inputs ——

*  What will we need going forward?
 How to handle stochasticity?
* Better understanding of the limits of our sensors
» Better integration of perception with planning/controls

 More abstract tools for mission requirements and interactions
between multiagent systems
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Safe and Robust Observer-Controller
Synthesis using Control Barrier Functions

Devansh R. Agrawal and Dimitra Panagou

Syntest

afetv—co \Ri ﬁ;‘f

Ts (oot

Abstract—This ra addre:
ing 4

v Wo
- controtierto emun that the nonlinear system remains safe
despite disturbat noisy sensor measurements.
ehw that even In indisturbed mos, !M connection be-
b: d ritical: if observers and

remain safe.
We propose two approaches to address the connection,
~{~2, one which is-suitable-for Input-to-State Stable obumn.
G\p, and the second which is Ippllubh toa blold.r range of
Jobservers referred 1o as ' ers, including
Extended Kjlmln Filter (EKF)-based obﬂrvﬂ We
the-ideas  u a simple double integrator system as an +
7 example, und :how a simulation study for the safe control
of a planar quadrotor with only position and orlentation

measurements.
/ e —antrel) e synthess
oF dj)f
. INTRODUCTION

OREE

\’0 TODO:[fill in intro}
v X0 In summary the primary contributions Hgfe m’li‘p%r
1) We propose two approaches o donnecting obsérvers o
controllers that guarantee safety of the system, subject
to matched and unmatched disturbances on dynamics,
and sensor noise.
-\ H) We-demonstrate that the methods can be applied to a
@ )} \\, wide range- of observer types, including Luenberger-
& 1| type observers, and a nonlinear gpseryer bused on the
Q"VL Extended Filier. |SO70 g}grﬁp“ o
SRS OV cOXFCRORETS!
& N O i Il. PRELIMINARIES AND MOTIVATIQN
o< \\)A. Notation
Let R denote the set of reals, and R>q,R5p denote the
set of non-negative, and positive reals respectively. ST -+
denotes the set of symmetric positive definite matrices in
R, Anin(P), Amaz(P) denote the smallest and largest
:lgcmralues of a matrix P € S%,. A continuous function
: R>p = Rsg is a class K function if a(0) =
i: is strictly increasing. a is a class K function
class K and lim,,a(r) = +o0. A continuous funclinrn
a:R - Ris class K, if it is strictly increasing, a(0) =
ot Hm, ..o, o(r) = 00 and lim,ey o5 afr) = —c0. A con?
tinuous function 3 : R>oxR>g — R is a class KL fum:;un
if, for each fixed s, r,5) is class K and for each fixed r,
nE)8(r9) j

Aorosvla-' Engh'.ﬂ department,
the University of umw Ann_ Arbor, USA. (devnn;h
dpunnec\-)eumch.eau 8o yor
AR

/€ ﬁy"—

B(r, ) is non-i wit 5, and lim, o0 ﬂ‘fr 5) = 0. The(
norm of a signal w : R>g — RY is [[w(t)[], £ supeso I‘w{ I\
‘The Lipschitz constant of a Lipschitz function f : C — D
denoted . Function compositions a(5(z)) are also denoted
aob(z).

B. System

Consider nonlinear control-affine systems subject o distur-
bances and noise:

g 1@ +9(z)u + 9a(=)d(t) (1a)
Ve y=c(z)+ cd(z)v(l), (1b)

where z € X C R™ is the systemY state, u € U C R"’
is the control input, y € R™ is the measured output, d
R — R™ is a disturbance on the system dynamics, and
v R>g — R™ is the measurement noise. We assume d and v
are piecewise continuous, bounded disturbances, [|d(t)||.., < d
and |[v(#)||, < © for some for some d, < oco. The functions
F:X SR, g:X 3 R™™ c: X 5 R™, gg: X -
R"%"4, and ¢4 : X — R™*™ are all assumed to be locally
Lipschitz continuous. Notice that g4(z)d(t) accounts for
matched end unmatched disturbances. @mﬂr@/
An interconnected observcr-conzmller is a dynamical sys-
tem, where the observer determines a state estimate, and the
controller uses the state estimate to determine the control in-
put. We assume the observer is control-affine, (this assumption
will be relaxed later in the paper); ;%‘.;:‘Q, 2

_:'v~) . E=pEY) +aE ), (2)
A" u=r2), @)

wmzéXu&hcsulcmmﬂc p (XXR™ — R,
g: X xR =5 R"*™ are locally Lipschitz in both arguments.
The feedback controller 7 : Rxo {s; RP — U is assumed
piecewise-continuous in ¢ and Lipschitz continuous in the
two arguments. Under these assumptions (for the closed XIS
sysiem formed by (1) and (2) there exists an interval Q‘]"
z«,zn) [0, tmas(Zo, Z0)] over which Solutions tothe~ f
stem exist and are unique [1, Thm 3.1). =
S For case of notation, let Y(2, M) denote the set of possk
) ble=of measurements M stat l.unanon cmorsis less
than M: =GRS trehes
Ve, M) = (v u—cmm(z)vm(
s [z — 2] <M, vuvn < @

An outer-approximation for Y can
Lipschitz constant of c(z) and a bound on cd(z) %D
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GATEKEEPER

|
Algorithm B0
perceived Construct Candidate replace
safe set > :
. Solve p = f(p,u), tr) = x(t can itted
(notation) P
; . v nom = pecene te |tp, try + T ko — P [
dynamics: T = I, U Pr _J™ .p or kot + T
y f( ’ ) nominal 4s . “ 75 (p) for t >ty + T
(unknown) safe set: S(?) trajectory - : no g
orward propagate closed loop system: > Dk
. . B x(tr) Simulate tracking controller for first T_s seconds Ts =Ts — AT . committed
perce|Ved safe set: k <t> current and backup controller after UHS [PIETOES trajectory
state /\ committed
controlled-inv. set: Cr () S N0 7 (7~ YES [ com _ peom] |

nominal trajectory: pp°"" (%)

candidate trajectory: p<am(t) See the paper for the full proof and algorithm description.

H H . com
committed trajectory:  pi”™ (1) Small modification to “isValid” needed to robustify against disturbances.

mission objectives a) Incorrect Approach b) Proposed Approach
v )
Perception x(t), e(t) .| Nominal P ominai
Module "1 Planner
Safety
y(®) Gatekeeper
Robot+ | u(t) Tracking |_ Prommited
Environment Controller New candidate
Candidate tube

tube is safe

intersects with
unsafe set

Gatekeeper, IROS 202372




Clarity: useful properties

qm| € [0, 1] Clarity is bounded, ‘perfect’ information as g[m] — 1
qlm + c| = qlm] Clarity is shift-invariant
qlam] # q|m)| Clarity is not scale-invariant

1

m o~ N(p,0%) = qm] =

e Clarity of Gaussian RV
o

Clarity lower-bounds the expected estimation error:

Theorem 1. For any 1-D continuous random variable m
and any m € R, the expected estimation error is lower-
bounded as

with equality if and only if m is Gaussian and m = E|m)].




Perceivability as a reachability problem

Define V' as the maximum clarity reachable from (¢, x, q):

V (¢, z(t),q(t)) = q(T')

s.t. & = f(xau)a q= g(x,u)




Perceivability as a reachability problem

Define V' as the maximum clarity reachable from (¢, z, q):

Vi(t,z(t),q(t)) = epna q(T)

s.t. & = f(xau)v q= g($,’LL)

By the principle of dynamic programming, for any 6 > 0,

Vita(t),qlt)) = _ max  V(t+0,z(t+0),q(t+9))




Perceivability as a reachability problem

Define V' as the maximum clarity reachable from (¢, z, q):

Vit z(),q(t) = _ x| q(T)

st = f(z,u), ¢ = g(z,u)

By the principle of dynamic programming, for any 6 > 0,

Vita(t),qlt)) = _ max  V(t+0,z(t+0),q(t+9))

Using a Taylor expansion about 0 = 0, as 9 — 0, we arrive
at the HIB PDE

8_V+mx 8_‘/ (mu) _1_6_‘/(3; )—O
ot | wett \ 9z’ V" (’9qg 4=

V(T,z,q) =q




Perceivability as a reachability problem

Theorem. LetV : |0, T] x X x |0,1] — R solve
To summarize:

oV N oV (r.0) ) + oV (2.q) = 0
at | wet \ oz’ Y dq INE4) =5 Given a robot model, env model, the
V(T,:C,q) —q VreEX, g€ [07 1]. clarity dynamics are well defined.

We can solve the HJB PDE for the

Then the (¢*, T)- perceivability domain of m € R is value function V (¢, x, q)

* e T T . *
D(¢",T) = {[zg.q]" : V(0,20,90) = "} Super-level sets of V determine the

) . erceivability domain
Moreover, the optimal controller 1s P Y

oV Value function determines the optimal

m(t,z,q) = argmax,, <%f(a:, u)) controller.
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