
1

Architectures for Safe Autonomy:
Provable Guarantees Across Control, Planning, and Perception

Devansh R Agrawal
PhD Defense
March 17, 2025

Title Slide 2
Architectures for Safe Autonomy:
Provable Guarantees Across Control, Planning, and Perception

Devansh Agrawal

University of Michigan, Ann Arbor

March 17, 2025

3

two main questions

How can we ensure safety constraints are
not violated during operation?

What are the limits of the information
gathering ability of robots?

Part 1: gatekeeper Part 2: Clarity and Perceivability

introduction :: gatekeeper :: perceivability :: conclusions

4

why do we want safety?

Why do you choose to use the lift?

The lift has a built-in safety mechanism:
when the cable is severed, a leaf-spring is
released, and it grabs onto the lift shaft.

How does this extend to modern autonomous
systems?

introduction :: gatekeeper :: perceivability :: conclusions

5

why do we want safety?

Why do you choose to use the lift?

Otis’ lift had a built-in safety mechanism:
when the cable is severed, a leaf-spring is
released, and it grabs onto the lift shaft.

How does this extend to modern autonomous
systems?

Elisha Otis, 1854

introduction :: gatekeeper :: perceivability :: conclusions

6

what are safety guarantees?

Ex. 1: Subterranean Navigation Ex. 2: Firewatch Mission

Navigate through the caves to

get a goal location.

Could be teleoperated or fully

autonomous.

Fly along the fire perimeter.

The helicopter’s GPS trace will

used to allocate firefighting

resources later.

introduction :: gatekeeper :: perceivability :: conclusions

7

what are safety guarantees?

Ex. 1: Subterranean Navigation Ex. 2: Firewatch Mission

We want to ensure safety, obstacle avoidance helicopter doesn’t enter the fire

subject to dynamics and input

constraints,

quadrotor dynamics

max speed of each motor

helicopter dynamics

max engine thrust and max roll angle

while completing the mission, navigate to a target location map the boundary of the fires

and being robust to disturbances

and uncertainties

wind, ground-effect, GPS-denied… unknown fire spread rate, …

introduction :: gatekeeper :: perceivability :: conclusions

8

what are safety guarantees?

Ex. 1: Subterranean Navigation Ex. 2: Firewatch Mission

We want to ensure safety, obstacle avoidance helicopter doesn’t enter the fire

subject to dynamics and input

constraints,

quadrotor dynamics

max speed of each motor

helicopter dynamics

max engine thrust and max roll angle

while completing the mission, navigate to a target location map the boundary of the fires

and being robust to disturbances

and uncertainties

wind, ground-effect, GPS-denied… unknown fire spread rate, …

We want a mathematical guarantee that the robot will not

become unsafe/behave unexpectedly.

introduction :: gatekeeper :: perceivability :: conclusions

9

how do we build (safe) autonomy?

The “autonomy stack” consists of many modules.

The only interface to the robot is the control input and the sensor output.

introduction :: gatekeeper :: perceivability :: conclusions

10

how do we build (safe) autonomy?

The “autonomy stack” consists of many modules.

The only interface to the robot is the control input and the sensor output.

Perception: Estimate robot’s state

Estimate fire map

Planner: Plan trajectories around fire perimeter

Controller: Compute control inputs to track the

planned trajectory

introduction :: gatekeeper :: perceivability :: conclusions

11

Domain 𝒳 ⊂ ℝ𝑛

Robot

formalizing the notion of safety

ex: avoid the walls, stay out of the fire

introduction :: gatekeeper :: perceivability :: conclusions

12

ways to achieve safety: filter the controller

Since the control inputs determine the future trajectory,

(and hence safety) can we “filter” the controller?

introduction :: gatekeeper :: perceivability :: conclusions

13

Domain 𝒳 ⊂ ℝ𝑛

Robot

safety through filtering control inputs

[1] Ames et al. TAC 2017.

introduction :: gatekeeper :: perceivability :: conclusions

14

ways to achieve safety: filter the controllerconstrain the planner

What if we made the safety constraints explicitly

part of the planner?

introduction :: gatekeeper :: perceivability :: conclusions

15

safety through constraints in planner

Path Planning

Ex. RRT*, A*, …

+ can handle complex and dynamic

environments

- different models used by planner

and controller leads to problems

Model Predictive Control

Ex. Nonlinear-MPC, MPPI, …

+ considers future behavior of robot

and environment

- need to ensure recursive feasibility

and stability

- can be computationally challenging

in nonconvex cases

introduction :: gatekeeper :: perceivability :: conclusions

16

many ways to achieve safety:
Constrained Planners

How does a human achieve this complex mission?

By thinking about contingencies/fail-safes/backups.

Control Barrier Functions

introduction :: gatekeeper :: perceivability :: conclusions

17

perspective shift:

What if we ensured that there exists a way to be safe from the current state?

Can we do this without compromising on the mission objectives?

Instead of checking that a controller is safe for all initial states,

gatekeeper

introduction :: gatekeeper :: perceivability :: conclusions

18

gatekeeper

introduction :: gatekeeper :: perceivability :: conclusions

19

gatekeeper

introduction :: gatekeeper :: perceivability :: conclusions

20

gatekeeper

Split into finite horizon

introduction :: gatekeeper :: perceivability :: conclusions

21

gatekeeper

Check that it

safely reaches 𝒞𝑘

introduction :: gatekeeper :: perceivability :: conclusions

22

gatekeeper

introduction :: gatekeeper :: perceivability :: conclusions

23

gatekeeper

• Step 1: Identify 𝒞𝑘

• Step 2: Construct a candidate trajectory

• Choose a switch time 𝑡𝑘𝑆

• Forward propagate tracking nominal until 𝑡𝑘𝑆

• Forward propagate backup controller until 𝑡𝑘𝐵

• Choose largest 𝑡𝑘𝑆 such that candidate is valid

• Step 3: Update committed trajectory

• If we found a candidate trajectory is valid,
replace committed trajectory.

• Else, keep old committed trajectory.

Controller always tracks the last committed
trajectory.

introduction :: gatekeeper :: perceivability :: conclusions

24

gatekeeper

• Step 1: Identify 𝒞𝑘

• Step 2: Construct a candidate trajectory

• Choose a switch time 𝑡𝑘𝑆

• Forward propagate tracking nominal until 𝑡𝑘𝑆

• Forward propagate backup controller until 𝑡𝑘𝐵

• Choose largest 𝑡𝑘𝑆 such that candidate is valid

• Step 3: Update committed trajectory

• If we found a candidate trajectory is valid,
replace committed trajectory.

• Else, keep old committed trajectory.

Controller always tracks the last committed
trajectory.

introduction :: gatekeeper :: perceivability :: conclusions

25

gatekeeper

• Step 1: Identify 𝒞𝑘

• Step 2: Construct a candidate trajectory

• Choose a switch time 𝑡𝑘𝑆

• Forward propagate tracking nominal until 𝑡𝑘𝑆

• Forward propagate backup controller until 𝑡𝑘𝐵

• Choose largest 𝑡𝑘𝑆 such that candidate is valid

• Step 3: Update committed trajectory

• If we found a candidate trajectory is valid,
replace committed trajectory.

• Else, keep old committed trajectory.

Controller always tracks the last committed
trajectory.

introduction :: gatekeeper :: perceivability :: conclusions

26

gatekeeper

• Step 1: Identify 𝒞𝑘

• Step 2: Construct a candidate trajectory

• Choose a switch time 𝑡𝑘𝑆

• Forward propagate tracking nominal until 𝑡𝑘𝑆

• Forward propagate backup controller until 𝑡𝑘𝐵

• Choose largest 𝑡𝑘𝑆 such that candidate is valid

• Step 3: Update committed trajectory

• If we found a candidate trajectory is valid,
replace committed trajectory.

• Else, keep old committed trajectory.

Controller always tracks the last committed
trajectory.

introduction :: gatekeeper :: perceivability :: conclusions

27

gatekeeper

• Step 1: Identify 𝒞𝑘

• Step 2: Construct a candidate trajectory

• Choose a switch time 𝑡𝑘𝑆

• Forward propagate tracking nominal until 𝑡𝑘𝑆

• Forward propagate backup controller until 𝑡𝑘𝐵

• Choose largest 𝑡𝑘𝑆 such that candidate is valid

• Step 3: Update committed trajectory

• If we found a candidate trajectory is valid,
replace committed trajectory.

• Else, keep old committed trajectory.

Controller always tracks the last committed
trajectory.

introduction :: gatekeeper :: perceivability :: conclusions

28

gatekeeper

• Step 1: Identify 𝒞𝑘

• Step 2: Construct a candidate trajectory

• Choose a switch time 𝑡𝑘𝑆

• Forward propagate tracking nominal until 𝑡𝑘𝑆

• Forward propagate backup controller until 𝑡𝑘𝐵

• Choose largest 𝑡𝑘𝑆 such that candidate is valid

• Step 3: Update committed trajectory

• If we found a candidate trajectory is valid,
replace committed trajectory.

• Else, keep old committed trajectory.

Controller always tracks the last committed
trajectory.

introduction :: gatekeeper :: perceivability :: conclusions

29

gatekeeper

• Step 1: Identify 𝒞𝑘

• Step 2: Construct a candidate trajectory

• Choose a switch time 𝑡𝑘𝑆

• Forward propagate tracking nominal until 𝑡𝑘𝑆

• Forward propagate backup controller until 𝑡𝑘𝐵

• Choose largest 𝑡𝑘𝑆 such that candidate is valid

• Step 3: Update committed trajectory

• If we found a candidate trajectory is valid,
replace committed trajectory.

• Else, keep old committed trajectory.

Controller always tracks the last committed
trajectory.

introduction :: gatekeeper :: perceivability :: conclusions

30

gatekeeper

• Step 1: Identify 𝒞𝑘

• Step 2: Construct a candidate trajectory

• Choose a switch time 𝑡𝑘𝑆

• Forward propagate tracking nominal until 𝑡𝑘𝑆

• Forward propagate backup controller until 𝑡𝑘𝐵

• Choose largest 𝑡𝑘𝑆 such that candidate is valid

• Step 3: Update committed trajectory

• If we found a candidate trajectory is valid,
replace committed trajectory.

• Else, keep old committed trajectory.

Controller always tracks the last committed
trajectory.

introduction :: gatekeeper :: perceivability :: conclusions

31

gatekeeper

• Step 1: Identify 𝒞𝑘

• Step 2: Construct a candidate trajectory

• Choose a switch time 𝑡𝑘𝑆

• Forward propagate tracking nominal until 𝑡𝑘𝑆

• Forward propagate backup controller until 𝑡𝑘𝐵

• Choose largest 𝑡𝑘𝑆 such that candidate is valid

• Step 3: Update committed trajectory

• If we found a candidate trajectory is valid,
replace committed trajectory.

• Else, keep old committed trajectory.

Controller always tracks the last committed
trajectory.

introduction :: gatekeeper :: perceivability :: conclusions

32

gatekeeper

gatekeeper provides recursive guarantee of safety

• for nonlinear dynamics

• for multiple constraints

• with inputs bounds

• possibly time-varying safe sets or dynamics

• partially known safe sets

• very low compute cost

• robust to disturbances and observer error

It does assume

• known backup controller and backup safe set

• known tracking controller

It does not assume:

• convexity of safe sets/dynamics

• nominal plan is dynamically feasible

introduction :: gatekeeper :: perceivability :: conclusions

34

related approaches:

FASTER Backup filters

Tordesillas et al, TRO 2021. Singletary et al, RAL 2022

introduction :: gatekeeper :: perceivability :: conclusions

35

related approaches:

FASTER Backup filters

Tordesillas et al, TRO 2021. Singletary et al, RAL 2022

Use MPC to simultaneously solve for both nominal

trajectory and a backup trajectory.

But assumes linear dynamics and static convex safe

sets (or SFCs) to maintain recursive feasibility.

introduction :: gatekeeper :: perceivability :: conclusions

36

related approaches:

FASTER Backup filters

Tordesillas et al, TRO 2021. Singletary et al, RAL 2022

Use MPC to simultaneously solve for both nominal

trajectory and a backup trajectory.

Forward propagates the backup controller. Mixes

nominal and backup based on how close backup

trajectory gets to unsafety.

But assumes linear dynamics and static convex safe

sets (or SFCs) to maintain recursive feasibility.

Only checks safety of backup trajectory. Always mixing

means nominal is never executed (even if it were safe).

introduction :: gatekeeper :: perceivability :: conclusions

37

related approaches:

FASTER gatekeepeer Backup filters

Tordesillas et al, TRO 2021. Agrawal et al, TRO 2024. Singletary et al, RAL 2022

Use MPC to solve for both nominal

trajectory and a backup trajectory

simultaneously.

Track the nominal for as long as possible,

before switching to backup.

Always track the last committed

trajectory.

Forward propagates the backup

controller. Mixes nominal and backup

based on how close backup trajectory

gets to unsafety.

introduction :: gatekeeper :: perceivability :: conclusions

38

gatekeeper results:

• gatekeeper stays very close to the

boundary, but stays safe

• Compared to FASTER:

• Lower compute time

3 ms vs 78 ms

• Compared to Backup Filters:

• Closer to fire perimeter

• Travels at higher speeds

introduction :: gatekeeper :: perceivability :: conclusions

39

gatekeeper experiments

introduction :: gatekeeper :: perceivability :: conclusions

40

where have we gone from here?

introduction :: gatekeeper :: perceivability :: conclusions

41

where have we gone from here?

1. Dev + AFRL: Multiagent Wez Avoidance

introduction :: gatekeeper :: perceivability :: conclusions

TopGun2

42

where have we gone from here?

2. Kaleb: Persistent exploration algorithms1. Dev + AFRL: Multiagent Wez Avoidance 3. Daniel: Budget constrained planning

introduction :: gatekeeper :: perceivability :: conclusions

43

closing the loop on safety guarantees:

Certified Perception:

Modified mapping algorithm to be robust to visual

odometry drift.

Observer-Controllers:

Devised CBF-QP controllers to handle state

estimation uncertainty.

introduction :: gatekeeper :: perceivability :: conclusions

44

two main questions

How can we ensure safety constraints are
not violated during operation?

What are the limits of the information
gathering ability of robots?

introduction :: gatekeeper :: perceivability :: conclusions

45

the information gathering problem

Southeast Austria weather data

WegenerNet [1]
[1] Kirchengast et al. 2013

introduction :: gatekeeper :: perceivability :: conclusions

46

the information gathering problem

[1] Kirchengast et al. 2013

Say we have a team of robots exploring this environment

to collect information.

How do we control the robots to collect the maximum

quality of information efficiently?

What does efficiently mean?

What does “quality of information” mean?

Can the robots collect the information in the first place?

(especially since the information itself is changing and the

robots are moving)

What are fundamental limits of information gathering?

Southeast Austria weather data

WegenerNet [1]

introduction :: gatekeeper :: perceivability :: conclusions

47

quantifying information

robot state:

𝑥 ∈ 𝒳 ⊂ ℝ𝑛

point 𝑝 ∈ 𝒟
with information 𝑚 ⊂ ℝ𝑑

Given a dynamical system, e.g.

a spatio-temporal environment model, e.g.

and a sensing model, e.g.:

design a controller 𝑢 ∶ 0, 𝑇 → 𝒰 to maximize quality of

information collected

We need a definition for “quality of information collected”

robot state affects ability to measure 𝑚

introduction :: gatekeeper :: perceivability :: conclusions

48

quantifying information: clarity

we need to quantify the quality of the information possessed, i.e., level of uncertainty about 𝑚

a point 𝑝 has

information 𝑚 ∈ ℝ𝑑,

modeled as a

 random variable

probability density function

Differential Entropy:
But:

ℎ 𝑚 ∈ [−∞, ∞]
can be negative,

perfect information as ℎ 𝑚 → −∞

introduction :: gatekeeper :: perceivability :: conclusions

49

Kalman filtering and clarity

We can derive the clarity dynamics:

Since 𝑞 = 1/(1 + 𝑃), we have

Given a dynamical system, e.g.

a spatiotemporal environment model, e.g.

and a sensing model, e.g.:

Using the Kalman Filter to assimilate measurements:

estimate has dynamics

stochasticity

decreases clarity
measurements

increase clarity

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Time

C
la

ri
ty

introduction :: gatekeeper :: perceivability :: conclusions

50

Kalman filtering and clarity

We can derive the clarity dynamics:

Since 𝑞 = 1/(1 + 𝑃), we have

Given a dynamical system, e.g.

a spatiotemporal environment model, e.g.

and a sensing model, e.g.:

Using the Kalman Filter to assimilate measurements:

estimate has dynamics

stochasticity

decreases clarity
measurements

increase clarity

Compare to Coverage Control [1-3]:

where 𝑆, 𝛼 are tuned heuristically.

[1] B. Haydon, et al. CDC 2021.

[2] Panagou, et al. TCNS 2016.

[3] Bentz, et al. Automatica 2019.

Clarity dynamics capture the information

collection mechanism based on the env.

and sensing model.

introduction :: gatekeeper :: perceivability :: conclusions

51

Dynamic CoveragePerceivability

maximizing information (i.e., clarity)

robot state:

𝑥 ∈ 𝒳 ⊂ ℝ𝑛

point 𝑝 ∈ 𝒟
with information 𝑚 ⊂ ℝ𝑑

Given a dynamical system:

an environment model:

and a sensing model:

The clarity dynamics are

Construct an augmented system

Solve an optimal control problem to reach target clarity.

Define 𝑚 for each point in a spatial domain

Quantify the rate of increase of clarity based on

robot locations

Design feedback controllers to maximize rate of

increase of clarity

introduction :: gatekeeper :: perceivability :: conclusions

52

perceivability

Perceivability depends on the

- environment model

- the robot’s sensing capabilities and

- robot’s actuation capabilities

Perceivability is an optimal control problem

that can be solved using reachability analysis

(i.e., the HJB equations)

Once we have solved for 𝑉, it also gives the

optimal controller as a feedback controller.

introduction :: gatekeeper :: perceivability :: conclusions

53

ex: salinity measurements

Optimal strategy requires going through the sensing region

many times, due to limited max speed

Solve the HJB PDE, and determine the perceivability domain

above green = target domain

above blue = perceivability domain

introduction :: gatekeeper :: perceivability :: conclusions

54

ex: salinity measurements

Single Integrator Dubin’s Boat

The perceivability of the environment depends on the robot’s actuation capabilities.

introduction :: gatekeeper :: perceivability :: conclusions

55

Dynamic CoveragePerceivability

maximizing information

robot state:

𝑥 ∈ 𝒳 ⊂ ℝ𝑛

point 𝑝 ∈ 𝒟
with information 𝑚 ⊂ ℝ𝑑

Given a dynamical system:

an environment model:

and a sensing model:

The clarity dynamics are

Construct an augmented system

Solve an optimal control problem to reach target clarity.

Define 𝑚 for each point in a spatial domain

Quantify the rate of increase of clarity based on

robot locations

Design feedback controllers to maximize rate of

increase of clarity

introduction :: gatekeeper :: perceivability :: conclusions

56

multiagent dynamic coverage

Spatiotemporal

Gaussian Process

Kalman Filter

(STGPKF)

Coverage Controller

Coverage Controller

Coverage Controller

Clarity Map

𝑞 ∶ ℝ × ℝ𝑑

→ ℝ

Robot

Env Estimate Map
መ𝑓 ∶ ℝ × ℝ𝑑 → ℝ

Control

𝑢𝑖
Robot

Robot

Environment

𝑓 ∶ ℝ × ℝ𝑑 → ℝ

⋮ ⋮

Measurement

𝑦𝑖 = 𝑓 𝑡, 𝑥𝑖 + 𝑤𝑖

Robot State

𝑥𝑖

Model information to be collected as a GP

Convert GP into SDE model

Estimate information using a spatiotemporal KF

Quantify the clarity gain rate given robot locations

Design coverage controllers to maximize clarity

(two methods proposed)

introduction :: gatekeeper :: perceivability :: conclusions

57

two coverage controllers
D

ir
e

c
t

M
e

th
o

d
In

d
ir

e
c
t

M
e

th
o

d

True Wind Speed Est Wind Speed Clarity Trajectories after 1 hour

introduction :: gatekeeper :: perceivability :: conclusions

58

where have we gone from here?

Kavin and Kaleb have run real-world experiments of this framework.

They have extended it to handle solar and battery constraints, the boat’s dynamics

and target clarities that depend on the information collected so far.

Kaleb is extending the method to handle non-stationary GPs.

Kavin is extending these ideas to try to quantify the information value of energy.

(real experimental data!)

introduction :: gatekeeper :: perceivability :: conclusions

59

conclusions

How can we ensure safety constraints are
not violated during operation?

What are the limits of the information
gathering ability of robots?

introduction :: gatekeeper :: perceivability :: conclusions

60

conclusions

• Why is designing safe autonomy hard?

“Information” flows

left-to-right

“Constraints” flow

right-to-left

Each module

computes quantities

used by downstream

modules

To guarantee safety

the downstream

modules impose

constraints on the

upstream modules

Flow of Information

Flow of Constraints

introduction :: gatekeeper :: perceivability :: conclusions

61

conclusions

• Why is designing safe autonomy hard?

• Flow of “safety constraints” is not well understood
Often “tacked on” rather than a core part of the design of
autonomous systems

• Resilience vs robustness

• “Mission requirements” is often implemented for a specific
situation, and general mathematical frameworks are
cumbersome/complicated

Flow of Information

Flow of Constraints

introduction :: gatekeeper :: perceivability :: conclusions

62

conclusions

• Why is designing safe autonomy hard?

• Flow of “safety constraints” is not well understood
Often “tacked on” rather than a core part of the design of
autonomous systems

• Resilience vs robustness

• “Mission requirements” is often implemented for a specific
situation, and general mathematical frameworks are
cumbersome/complicated

• What will we need going forward?

• How to handle stochasticity?

Flow of Information

Flow of Constraints

introduction :: gatekeeper :: perceivability :: conclusions

63

conclusions

• Why is designing safe autonomy hard?

• Flow of “safety constraints” is not well understood
Often “tacked on” rather than a core part of the design of
autonomous systems

• Resilience vs robustness

• “Mission requirements” is often implemented for a specific
situation, and general mathematical frameworks are
cumbersome/complicated

• What will we need going forward?

• How to handle stochasticity?

• Better understanding of the limits of our sensors

• Better integration of perception with planning/controls

Mark Rober, 2025

introduction :: gatekeeper :: perceivability :: conclusions

64

conclusions

• Why is designing safe autonomy hard?

• Flow of “safety constraints” is not well understood
Often “tacked on” rather than a core part of the design of
autonomous systems

• Resilience vs robustness

• “Mission requirements” is often implemented for a specific
situation, and general mathematical frameworks are
cumbersome/complicated

• What will we need going forward?

• How to handle stochasticity?

• Better understanding of the limits of our sensors

• Better integration of perception with planning/controls

• More abstract tools for mission requirements and interactions
between multiagent systems

Flow of Information

Flow of Constraints

introduction :: gatekeeper :: perceivability :: conclusions

65

acknowledgements

Prof Dimitra Panagou

CDC 2021 Jeju Island (but covid)

CDC 2022 Cancun, Mexico

CDC 2023 Singapore

CDC 2024 Milan, Italy

ACC 2021 Atlanta, Georgia

IROS 2023 Detroit, USA

ICRA 2024 Yokohama, Japan

CAAMS 2024 San Diego, USA

CAAMS 2024 Boston, USA

CAAMS 2025 Hawaii, USA

CPS Training Marblehead, USA

66

acknowledgements

Prof Dimitra Panagou

Prof Chris Vermillion Prof Aaron Ames

Prof Necmiye OzayProf Vasileios Tzoumas Prof Ilya Kolmanovsky

Prof John Ho Mr Terence Chiew Mr Damen Provost Rotor

67

acknowledgements

68

acknowledgements

my lab coffee setup The L&B Kitchen

Title Slide 2
Architectures for Safe Autonomy:
Provable Guarantees Across Control, Planning, and Perception

Questions?

Title Slide 2
Backup Slides

71

Contributions

Input Constrained Control

Barrier Functions

(CDC 2021)

Observer-Controller

Interconnections

(LCSS/CDC 2022)

Multirate Planner-Controllers

using Differential Flatness

(LCSS/ACC 2022)

gatekeeper

(TRO 2024, IROS 2023)

Certifiably-Correct Mapping

despite Visual Odometry Drift

(RSS 2025, under review)

Clarity and Perceivability

(LCSS/CDC 2023)

Multiagent Dynamic

Coverage with GPs

(CDC 2024)

Advances in the Theory of

CBFs

(Annual Reviews 2024)

Energy-Aware Ergodic Search

(ICRA 2024)

Flow of Information

Flow of Constraints

72

(notation)

Algorithm

dynamics:

(unknown) safe set:

perceived safe set:

nominal trajectory:

candidate trajectory:

committed trajectory:

controlled-inv. set:

Gatekeeper, IROS 2023

See the paper for the full proof and algorithm description.

Small modification to “isValid” needed to robustify against disturbances.

73

Clarity: useful properties

Clarity lower-bounds the expected estimation error:

74

Perceivability as a reachability problem

75

Perceivability as a reachability problem

76

Perceivability as a reachability problem

77

Perceivability as a reachability problem

To summarize:

Given a robot model, env model, the

clarity dynamics are well defined.

We can solve the HJB PDE for the

value function 𝑉(𝑡, 𝑥, 𝑞)

Super-level sets of V determine the

perceivability domain

Value function determines the optimal

controller.

	Slide 1: Architectures for Safe Autonomy: Provable Guarantees Across Control, Planning, and Perception
	Slide 2: Architectures for Safe Autonomy: Provable Guarantees Across Control, Planning, and Perception
	Slide 3: two main questions
	Slide 4: why do we want safety?
	Slide 5: why do we want safety?
	Slide 6: what are safety guarantees?
	Slide 7: what are safety guarantees?
	Slide 8: what are safety guarantees?
	Slide 9: how do we build (safe) autonomy?
	Slide 10: how do we build (safe) autonomy?
	Slide 11: formalizing the notion of safety
	Slide 12: ways to achieve safety:
	Slide 13: safety through filtering control inputs
	Slide 14: ways to achieve safety:
	Slide 15: safety through constraints in planner
	Slide 16: many ways to achieve safety:
	Slide 17: perspective shift:
	Slide 18: gatekeeper
	Slide 19: gatekeeper
	Slide 20: gatekeeper
	Slide 21: gatekeeper
	Slide 22: gatekeeper
	Slide 23: gatekeeper
	Slide 24: gatekeeper
	Slide 25: gatekeeper
	Slide 26: gatekeeper
	Slide 27: gatekeeper
	Slide 28: gatekeeper
	Slide 29: gatekeeper
	Slide 30: gatekeeper
	Slide 31: gatekeeper
	Slide 32: gatekeeper
	Slide 34: related approaches:
	Slide 35: related approaches:
	Slide 36: related approaches:
	Slide 37: related approaches:
	Slide 38: gatekeeper results:
	Slide 39: gatekeeper experiments
	Slide 40: where have we gone from here?
	Slide 41: where have we gone from here?
	Slide 42: where have we gone from here?
	Slide 43: closing the loop on safety guarantees:
	Slide 44: two main questions
	Slide 45: the information gathering problem
	Slide 46: the information gathering problem
	Slide 47: quantifying information
	Slide 48: quantifying information: clarity
	Slide 49: Kalman filtering and clarity
	Slide 50: Kalman filtering and clarity
	Slide 51: maximizing information (i.e., clarity)
	Slide 52: perceivability
	Slide 53: ex: salinity measurements
	Slide 54: ex: salinity measurements
	Slide 55: maximizing information
	Slide 56: multiagent dynamic coverage
	Slide 57: two coverage controllers
	Slide 58: where have we gone from here?
	Slide 59: conclusions
	Slide 60: conclusions
	Slide 61: conclusions
	Slide 62: conclusions
	Slide 63: conclusions
	Slide 64: conclusions
	Slide 65: acknowledgements
	Slide 66: acknowledgements
	Slide 67: acknowledgements
	Slide 68: acknowledgements
	Slide 69: Architectures for Safe Autonomy: Provable Guarantees Across Control, Planning, and Perception
	Slide 70: Backup Slides
	Slide 71: Contributions
	Slide 72: Algorithm
	Slide 73: Clarity: useful properties
	Slide 74: Perceivability as a reachability problem
	Slide 75: Perceivability as a reachability problem
	Slide 76: Perceivability as a reachability problem
	Slide 77: Perceivability as a reachability problem

