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4.1 Overview of notation and objectives. (a) depicts the operating environment,
where the world W is the union of the free space F and the obstacles O. The
robot does not know F or O. It starts at B0, and follows the gray trajectory
to Bk building the map as it goes. (b) depicts the ideal mapping output, where
at the k-th timestep, the map Mk is composed of the known safe region Sk,
the unknown space Uk and the known obstacle set Rk. (c) depicts the map
produced by current state-of-the-art methods, where due to odometry drift the
map is erroneous: notice that the safe region (according to the constructed map)
is not a subset of the free space, Sk ̸⊂ F . (d) depicts the desired behavior of the
certified maps, where although the safe region is smaller, it is certifiably-correct:
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stores the signed distance to the nearest obstacle. From this, both the (d) ESDF
at specific voxels or (e) obstacle surface locations can be extracted and used for
safe navigation. To aid the reader, in (c) and (d) the raw pointcloud is also
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d > 0, and red otherwise. This makes the map look binary, although it contains
continuous values. Furthermore, note both methods operate in 3D - the 2D slice
is used for visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Visualization of a snapshot of the office0 environment mapped using the base-
line and certified SFC methods. (a, d) shows the office0 environment, while (b,
e) and (c, f) show the respective S sets at the 500-th timestep from an external
and an internal view. The baseline map claims a larger volume to be safe com-
pared to the certified method (red volume is larger than green volume). However,
we can also see numerous regions where the red region intersects with the ground
truth mesh, indicating that the claimed safe region contains obstacle points. In
the certified method, we see no violations. . . . . . . . . . . . . . . . . . . . . 113

4.4 Visualization of the maps generated using the baseline and certified ESDF meth-
ods on the office3 environment. In (a) we see the ground-truth mesh. In (b)
and (c) we can see the internal view after 500 timesteps. As in Figure 4.3, al-
though the baseline method maps a larger volume (red mesh is larger than green
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over time. The green region indicates the S set at the respective times. The
small black arrows point to various violations in the baseline method, while in
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4.5 Rover Experimental Setup. (a) Block diagram. The human is teleoperating
the rover using only the First Person View (FPV) feed and the reconstructed
obstacle map computed and streamed in real-time. The map is also used onboard
the robot to stop the robot if it violates safety constraints. The safety filter
can either use the baseline ESDF or the Certified ESDF. (b) Picture of the
testing environment. The robot drives through the tunnel, mapping it as it
passes through. After exploring the corridors, the rover tries to return through
the tunnel in reverse, without remapping the tunnel. (c) shows the rover in more
detail. The AION R1 UGV has been modified, with all sensing on Intel Realsense
D455, and all compute on the Nvidia OrinNX 16GB. . . . . . . . . . . . . . . . 120

4.6 Rover Experimental Results. (a, b) shows snapshots of the reconstructed obstacle
map and the estimated rover pose with the baseline method (a) and the certified
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Note, two small black boxes are drawn in each frame (in post) to indicate to the
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final state of the robots at the end of the trajectory. In (c), the baseline method
the robot has crashed with the green obstacle, although looking at the last panel
of (a), we can see that the robot thinks it is in the middle of the tunnel in the
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on a 2D slice of the ESDF extracted at the robot height. As a reference, the
area of the Field of View (FoV) of the camera is also drawn. (b) Compares the
distance of the furthermost (claimed) free voxel from the robot position. As a
reference, the maximum depth of the depth sensor (8 m) is indicated. In (c1-c4)
we see snapshots of the map generated by the Baseline ESDF method, and in
(d1-d4) we see the corresponding snapshots from the Certified ESDF method.
The accompanying video animates the map slices and is therefore clearer. . . . 137

ix
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ABSTRACT

This thesis focuses on the design of safety-critical autonomous systems - systems that
must always satisfy a set of safety constraints. The primary objective is to develop a cohe-
sive architecture for the entire autonomy stack, ensuring that, under specific and verifiable
assumptions, a robot can execute its mission while maintaining safety.

Modern autonomous systems present unique challenges because their autonomy stacks are
composed of interdependent modules: (1) a mission-level planning module that makes high-
level decisions, (2) a perception module that processes sensor data to estimate the robot’s
state and the operating environment, (3) a planning module that generates a trajectory
for execution, and (4) a control module that computes actuation commands. Guaranteeing
safety requires a systematic approach to the design and integration of these modules.

To achieve this, we take a bottom-up approach, starting with the design of a safety-
critical controller and identifying the assumptions necessary for its safe operation. These
assumptions impose requirements on upstream autonomy modules, such as the planning and
perception modules. We then propose methods to design or augment each module to ensure
that, when composed, the entire autonomy stack maintains safety guarantees. The focus is
not only on individual module correctness but making assumptions for each module that can
be satisfied by upstream modules, to be able to achieve system-level guarantees.

The main contributions of this thesis include: (A) the gatekeeper architecture - a flexible
framework for establishing rigorous safety guarantees at the planning level, (B) the develop-
ment of certifiably correct perception algorithms that generate accurate obstacle maps while
providing error bounds to account for odometry drift, and (C) the introduction of clarity
and perceivability - concepts that quantify a robotic system’s ability to gather information
about its environment, considering the environment model as well as the robot’s actuation
and sensing capabilities.

Each contribution is supported by formal proofs and validated through simulations and
hardware experiments with aerial and mobile robots.
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CHAPTER 1

Introduction

A machine is anything that reduces
human effort. Anything that simplifies
work, or saves time, is a machine.
From a pen’s nib to a pants’ zip - all
machines. Up and down in a second!
Up, down, up, down...

Rancho
3 Idiots

This thesis puts forth a set of frameworks and methods to design safety-critical au-
tonomous systems. A key theme of the thesis is to understand how the various modules
of a modern autonomy stack should be modified and integrated such that the safety guar-
antees can hold across the entire autonomy stack.

We start in this chapter by studying some motivating examples of autonomy systems,
both of systems in operation today, and also of systems to be developed in the future. This
exercise will help us identify some recurring challenges and common bottlenecks in state-
of-the-art methodologies. This will help us identify suitable abstractions that the theory
presented in this thesis will ultimately address. The remainder of the chapter highlights the
key contributions of the thesis and the order it is presented in. Since each chapter address
a different part of the autonomy stack, the relevant literature for each chapter is presented
towards the beginning of the chapter.

1.1 Motivation

Modern machines are becoming increasingly capable and relied upon. As the computational
capacity of our robots increases, they have greater ability to to analyze incoming data,
reason about their objectives, and decide on the best course of action. Increasingly, we are
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expecting these robots to be able to perform tasks in challenging and diverse environments,
where it is no longer sufficient to simply define a set of primitive rules that constrain the
robots operating parameters - instead, we expect our robots to be able to make intelligent
decisions in the face of uncertainty. Furthermore, we expect them not to fail.

The need for guarantees

Consider, for example, the lift - found in almost every building three stories or higher across
the world. Although one might not consider this a particularly interesting robotic system,
think about why you trust your life to a metal box in a hollow vertical shaft every time
you enter a lift. History sheds some light here. The lift was invented by Elisha Otis, who
demonstrated his invention at the 1854 World’s Fair [29, pg. 1]:

“He installed a platform on guide rails on which he had himself hoisted into the
air before the onlookers. When the platform had risen to its maximum height, to
their horror, he severed its suspension cable. But instead of plunging fifty feet to
the ground, the elevator stopped short after only a few inches of travel. “All safe,
gentlemen, all safe,” Otis reassured the shocked fair-goers, and then explained his
newly developed safety catch.” [29, pg. 1]

Naturally, 1854 was not the first time humanity thought of the idea of a lift - the idea
of using ropes to hoist things has appeared in writing since at least Archimedes [29]. Otis’
novelty lie in the safety-critical component, the automatic braking system.1

The lift’s safety mechanism was primarily mechanical.2 Its operational principle could
be justified theoretically, and verified experimentally. As our robots get more complicated
and operate in more unstructured environments, it becomes more challenging to guarantee
safety. For our technologies to be used, relied upon, and built further, we require safety and
performance guarantees for the system.

Guarantees for Nonlinear Systems

Modern control theory has a long and successful history, with many of the foundational
results having been developed in the 1960s. This is around the time when Bellman, Pon-

1The lift also had significant societal impact - prior to its mass adoption, the prime real estate was
apartment on the first floor, not the penthouse at the top of the sky scrapper. Once available, the rich chose
to reside at the top floors, away from all of the noise and pollution near the roads [29].

2For the curious, the safety mechanism is as follows. A leaf spring was installed in the ceiling of the lift,
and kept under tension by the suspension cable. If severed, the leaf spring would flatten, and dig into the
geared teeth lining the lift shaft. This would stop the elevator.
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tryagin, Lyapunov,3 Kalman, and many more developed their theories. Coupled with the
introduction of digital computer systems, these theories could be deployed on an autonomous
system, with many of the early applications being for space systems [104, Ch. 1].

Although many of these ideas were quickly extended to the nonlinear setting, analytical
and computational limitations meant that many of these theories could only be applied to
linear control systems. Coupled with the analytical tools from Laplace, Fourier, Nyquist,
Bode, etc, one could analyze, and more importantly predict, the behavior the (linear) au-
tonomous system being controlled. With the tools from robust analysis developed in the
1980s, one could design and build systems with guarantees of stability and robustness to
disturbances. [104, Ch. 1].

The control of nonlinear systems is significantly more challenging, and the available tools
are more limited. Most of the methods extend one of two foundational principles: the
dynamic programming/optimal control principles along the lines of Bellman and Pontryagin
(e.g. [70]), or the Lyapunov function based feedback control methods (e.g. [91]). Although
both methods are developed for general nonlinear systems, they can be difficult to use.
Optimal control methods scale poorly with the number of state, while finding a Lyapunov
method is often challenging.

Nonetheless, since many real-world robotic systems are nonlinear, it is important for the
tools we develop to be applicable for nonlinear systems, since we still require guarantees
for these systems. A common paradigm (especially in the controls community) is to design
controllers using a linear or linearized model, and then analyze the convergence properties of
the nonlinear system with the linearized controller [91]. Another common paradigm (popular
in the robotics community) is to decompose the controller into two modules, where the first
uses linear/linearized models to compute trajectories, and the second module uses a nonlinear
trajectory tracking controller to execute the commands.

Interfacing Modules within the Autonomy Stack

The problem becomes even more challenging when considering robots that operate in un-
structured environments. For instance, consider a drone flying through a set of previously
unmapped obstacles. In this case, the drone must sense the world through onboard sensors,
identify the positions of the obstacles, plan paths around the obstacles, and control its mo-
tors to ensure that the plan is executed safely. Notice how the final guarantee of collision
avoidance depends on each module (the perception, the planning, and the control module)
working correctly, and interfacing correctly across them.

3Lyapunov developed his theories much earlier, around 1892, although the results remained unknown to
the western world until around the 1960s
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But what does it mean to interface the modules correctly? Beyond just making sure that
each module can send and receive appropriate inputs and outputs, we must ensure that the
assumptions that each module makes are guaranteed by the previous modules. For example,
suppose the planning module assumes that obstacles in the world have a position and size
that is known exactly. Under said assumption, the planning module guarantees that the
planned trajectory is safe. However is this assumption satisfied? If the perception module
builds a probabilistic model of the obstacles in the world, the assumption is not satisfied
even when the perception module is working perfectly. Similarly, the planning module only
guarantees safety if the path was executed perfectly - the controller however may not be able
to guarantee this in the presence of disturbances. As such, even when the theory of each
module is established, we must ensure that the structure of the assumptions is compatible
across the interfaces of each module.

In recent years, and especially with the popularity and capability of the Reinforcement
Learning (RL)/Machine Learning (ML) methods, there is a trend towards building end-to-
end algorithms for robotic systems. Proponents of this architecture argue that the entire
autonomy stack (that is, a single perception-planning-control module) should be simulated
and trained to perform their missions while respecting safety constraints. However, the
guarantees that such an approach yields are often probabilistic, since the system can only
be verified on the scenarios tested in simulation, ultimately a finite set of scenarios [38].
Without tools to extrapolate the systems behavior in unseen scenarios, it is difficult to argue
that the system possesses any strong guarantees of safety.

Information Gathering

Finally consider the following example: a Martian rover needs to get to a certain location,
but the traversability of the map is unknown. It is unknown whether certain parts of the
map are sandy or rocky, and it also unknown what the future weather will be like, and what
the available solar resource will be in the future. To ensure that the robot can safely navigate
the environment, without violating constraints like battery levels or obstacle avoidance, it
must collect information about the environment it is operating in.

At the same time, the robots ability to collect information is affected by the environment
and the robots own dynamics. In the sandy parts of the terrain, the robot slips and cannot
move as quickly. Furthermore, some pieces of information change temporally (e.g. the solar
resource), spatially (e.g. the incline of the ground) or spatiotemporally (e.g., the wind speed
at each position and time). To be able to complete the mission successfully, the robot must
collect information, but to collect information, the robot must be able to execute a plan
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successfully. This interdependence can be challenging for robotic systems to reason about.
The leads us to the following question: given the environment, the robot’s dynamics

model, and the robot’s sensor model, what is the greatest amount of information that can
be collected safely? Furthermore, what information is the most valuable to be collected to
ensure the robot can operate safely?

1.2 Outline and Contributions

1.2.1 Outline

This thesis is structured primarily into four chapters, where we build our autonomous system
architecture in a bottom-up approach.
Ch. 2: We start with the final module, the controller. The controller directly interfaces

with the robot, and ultimately determines whether the robot will be safe in the
future. In this chapter we pose the problem of safety mathematically, and intro-
duce two controllers that allow for the controller to behave safely especially under
input constraints and uncertainty in state estimation.

Ch. 3: In analyzing the controller we will see that to build guarantees of safety, we rely
upon the commands sent to the controller being reasonably well-behaved, and
satisfying certain assumptions. In this chapter we propose two methods to inter-
face the planning module with the control module. The first method relies on a
specific property of the system dynamics (its differential flatness) to prove that
the interface between the planner and controller guarantees safety. The second
method offers a far more flexible approach to interface planners and controllers,
relying instead on the existence of a fail-safe controller.

Ch. 4: Here, we start to address the interface with the perception modules of an auton-
omy stack. In particular, we demonstrate that one can construct a perception
algorithm that can have hard guarantees of correctness (under specific and ver-
ifiable assumptions) that are formulated to be compatible with the downstream
planning modules described earlier.

Ch. 5: Finally, in this chapter we discuss methods to characterize the maximum infor-
mation that a robotic system can extract from an operating environment. We
introduce the notion of perceivability which measures whether a given robotic sys-
tem (with its specific dynamics and sensor models) can collect information from
the environment. We further use these characterizations to construct optimal
multiagent controllers to collect information from a spatiotemporal environment.
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1.2.2 Top-down vs bottom-up approaches

Environment

 Control Inputs 

Controller
(Ch 2)

Planner
(Ch 3)

Perception
(Ch 4)

Mission-level
Planner
(Ch 5)

 Sensor Data  Robot

Flow of information

Flow of constraints

Autonomy Stack

Figure 1.1: A robot’s autonomy stack consists of a controller, a planner, a perception module,
and (in some cases) an informative path planner. The autonomy stack takes in sensor data,
processes it, and computes a control input that is sent to the robot. We explicitly draw
the robot as being encased in the environment, since the interaction of the robot with the
environment can often determine the behavior of the full system.

We deliberately chose to organize this thesis in this bottom-up sense, instead of the more
common top-down approach. Consider the modern autonomy stack, depicted in Figure 1.1.
The top-down approach follows from starts by building the mission-level planner to meet
mission objectives, and later designs/builds the rest of the perception, planning and control
modules. This approach is common and sensible, since it starts from the objectives and
eventually designs the full system to meet the objectives. This also corresponds to the flow
of information through the autonomy stack, and is often the order in which calculations are
performed on a robotic system.

However, for a safety-critical system, it is often important to design the system the other
way around, in a bottom-up sense. In a safety-critical autonomy stack, guaranteeing safety is
the utmost priority, perhaps even at the expense of not meeting other mission objectives. In
such cases, the controller ultimately decides whether safety is maintained. For the controller
to be able to do its job, the inputs it receives from the upstream modules must all be
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consistent and satisfy the assumptions used by the downstream modules.
Interpreting this backwards flow of constraints is therefore the paradigm shift that is

needed to successfully design a safety-critical system: we must design the upstream modules
such that they satisfy constraints imposed by downstream modules. Beyond treating this
as simply a conceptual shift, in this thesis I argue that in some cases these constraints can
and should be imposed explicitly on the upstream modules - this will be especially explicit
in Section 3.1, where the low-level tracking controller imposes constraints on the high-level
planning module to yield the desired safety guarantees.

The challenge in constructing a safe autonomous system is to balance the top-down flow
of mission objectives, with the bottom-up flow of constraints necessary for safety. This
requires the safety critical components to be designed with sufficient flexibility that they
only constrain the system when necessary to maintain safety. In this thesis, we primarily
derive sufficient conditions for safety to be maintained, but we desire the gap between what
is necessary for safety and what is sufficient for safety to be small.

In a sense, it can be trivial to design a safety critical system: simply design the controller
to never let the robot move. Under mild assumptions (i.e., that the robot starts in a safe
place), this controller guarantees safety. However, this controller also prevents the mission
from being completed. This idea extends to less trivial scenarios: suppose the safety critical
controller of a self-driving vehicle is designed to execute a failsafe stopping maneuver if
there are too many cars or pedestrians around for it to perform its computations within
a budgeted time - such a controller might be able to maintain safety, but if other cars
around it perform a similar algorithm, they may all come to a deadlock scenario, preventing
any mission objectives from being satisfied. This example suggests that the safety critical
guarantees need to be considered carefully, to ensure that they do not detract from the
mission objectives significantly.

1.2.3 Primary Contributions

We now highlight the primary contributions in this thesis, in the order they appear.

1. In Section 2.2 we introduce the notion of an Input-Constrained Control Barrier Func-
tion (ICCBF) as developed in [4]. This builds on the CBF-Quadratic Program (QP)
controller introduced by Ames in [21], specifically to synthesize controllers to guarantee
safety for input-constrained systems.

2. In Section 2.3, we introduce Observer-Robust CBFs, as developed in [5]. This section
demonstrates how the CBF-QP controller can be robustified to handle state-estimation
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uncertainties, and two approaches are demonstrated depending on the structure of the
observer used. This section makes explicit the connection between the controller and
the perception module (which often contains the state-estimator).

3. In Section 3.1 we investigate a constructive method to codesign planners and controllers
to guarantee safety, as developed in [8]. We investigate deeply how despite different
models and assumptions used for the planner and for the controller, the two can be
co-designed for safety if the robot posesses a specific property called differential flatness.

4. In Section 3.2 we make the previous approach significantly more flexible and general,
and presents the theory developed in [10]. The method is far more flexible since it
does not assume differential flatness, but instead assumes the existence of a backup
controller, which almost all practical robotic systems will have. The core idea is to
filter the output of the path planner before it hits the controller, to ensure that only
safe trajectories are sent to the controller.

5. In Section 4.1 we develop a framework to construct certifiably-correct obstacle maps for
robotic systems that operate under visual odometry, as presented in [2] (under review
at the time of writing). This section identifies that for the guarantees of obstacle
avoidance to be valid in a system that only uses visual(-inertial) sensing to localize
and map the obstacles in the environment, the state-of-the-art perception modules
need to be modified. We present two methods to do this, depending on the mapping
methodology used.

6. In Section 5.1 we define two new concepts, clarity and perceivability, as presented
in [6].4 Clarity is an information-theoretic measure based on differential entropy which
we demonstrate has desirable properties in the context of informative path planning and
dynamic coverage controllers. We use this to develop the notion of perceivability, which
measures whether, given an environment to collect data from, a robotic has sufficient
sensing capabilities and sufficient actuation capabilities to collect the information. By
posing this as an optimal control problem, we can also derive optimal controllers to
collect the information.

7. In Section 5.2 we present a multi-agent architecture for a team of robots to explore a
domain, collect and assimilate information and determine the optimal control actions,
as developed in [7]. It extends the methodologies presented in [6, 126] by using a
spatiotemporal Gaussian Process (GP) model of the world, and using the environment

4This work was awarded the IEEE Technical Committee on Aerospace Controls (TCAC) Best Paper
Award.
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model to accurately determine how valuable taking a measurement is on the total
amount of information, and therefore determining the optimal control policies for each
agent.

The topics presented address some key challenges and bottlenecks in the state-of-the-art
methods. These are discussed in detail in their respective chapters, but here we make some
broad remarks.

• Incompatible assumptions: A significant theme of the methods developed in this
thesis is to construct theorems such that the required assumptions are reasonable
and satisfied by upstream modules. In state-of-the-art literature it is not uncommon
to find results where a module has been designed, but makes assumptions that are
unnatural and are not satisfied by the upstream modules. A good example of this is the
method proposed in Section 4.1, where instead of improving the perception methods or
modifying the mapping methods, we build a modification to the perception algorithm
such that the two can be interfaced with guarantees.

• Safety filtering can be myopic: Over the last decade, CBFs have become very
popular tools to construct formal guarantees of safety. However, as we discuss in Sec-
tion 2.1, it is (A) challenging to find a CBF for a given system, and (B) even when
a CBF is found, it tends to be myopic, i.e., it guarantees safety at the expense of
mission objectives. In this thesis, we sought to generalize the idea of set invariance in
a way that the safety filtering can be performed at the planning layer instead of at the
control layer. This led to the development of the gatekeeper framework, discussed
in Section 3.2.

• Fundamental limits of robotic information gathering: In order for a robot to
operate in an environment, it often needs to collect information about the environment,
and the state-of-the-art methods on both informative path planning and dynamic cov-
erage implicitly assumed that a robot (or a team of robots) has the ability to collect
information from the environment. However from state-of-the-art methods it was not
clear whether there was a fundamental limit on the maximum amount of information
that can be collected. In Section 5.1, we developed metrics to address this question,
and by reformulating information gathering as an optimal control problem were able
to derive explicitly the maximum quality of information that can be collected by a
robot, and further compute the optimal controller for this purpose. This has also led
to significant developments in the theory and algorithms that suitable for dynamic
coverage, as discussed in Section 5.2.
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1.3 Notation

The following notation is used throughout this thesis, unless otherwise stated.

• Domains

– N = {0, 1, 2, ...} is the set of natural numbers.

– Z is the set of integers.

– R,R≥0,R>0 denote reals, non-negative reals, and positive reals.

– Sn
+, Sn

++ denote the set of symmetric positive semi-definite and symmetric positive-
definite matrices in Rn×n.

– SO(n) is the n-d special orthogonal group.

– SE(n) is the n-d special Euclidean group.

– B(r) = {x ∈ Rn : ∥x∥ ≤ r} denotes the closed ball in Rn.

– B(c, r) = {x ∈ Rn : ∥x− c∥ ≤ r} denotes the ball centered at c ∈ Rn.

– L∞(T ,X ) for T ⊂ R, X ⊂ Rn is the set of signals w : T → X such that there
exists a M < ∞ for which ∥d∥∞ ≤ M . That is, L∞(T ,X ) is the set of bounded
signals that map from T to X .

• Sets

– ∅ = { } is the empty set.

– A ⊂ B for two sets A,B if x ∈ A =⇒ x ∈ B. Note, we do not distinguish
between ⊂ and ⊆ in this thesis.

– Int(C) and ∂C denote the interior and boundary of a set C.

– C ⊕ D = {c + d ∈ Rn : c ∈ C, d ∈ D} denotes the Minkowski sum between two
sets C,D ∈ Rn.

– C ⊖ D = {c ∈ C : c+ d ∈ C ∀d ∈ D} denotes the Pontryagin set difference.

• Vectors

– Let v ∈ Rn.

– vi and [v]i denote the i-th element of v ∈ Rn.

– ∥v∥p = (
∑n

i=1 |vi|
p)

1/p refers to the p-norm, for p ∈ [1,∞).
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– ∥v∥∞ = maxi∈{1,...,n} |vi| is the ∞-norm of a vector.

– ∥v∥ = ∥v∥2 is the 2-norm (Euclidean Norm) of v ∈ Rn.

– ∥v∥P =
√
vTPv for P ∈ Sn

++.

– [v]× ∈ R3×3 is the skew-symmetric matrix, i.e., the matrix such that a× b = [a]×b

for any a, b ∈ R3.

• Matrices

– Let M ∈ Rn×m be a matrix.

– Mi,j and [M ](i,j) denote the (i, j)-th entry of a matrix M ∈ Rn×m.

– In ∈ Rn×n is the n×n identity matrix. The subscript is dropped when clear from
context.

– ∥M∥p = supx ̸=0

∥Mx∥p
∥x∥p

is the induced p-norm.

– ∥M∥ = ∥M∥2 is the induced 2-norm of a matrix, unless otherwise specified.

– ∥M∥F =
√∑n

i=1

∑m
j=1M

2
i,j is the Frobenius norm.

– σi(M) is the i-th singular value, organized such that σ1 ≥ σ2 ≥ · · ·σk ≥ 0, where
k = min(n,m).

– A⊗B denotes the Kronecker product of vectors or matrices A,B.

– Let S ∈ Rn×n be a square matrix.

– λmin(S), λmax(S) denote the smallest and largest eigenvalues of S ∈ Rn×n. All
eigenvectors are assumed to be unit-norm unless otherwise specified.

– |S| is the determinant of S.

– tr (S) is the trace of S.

– Let P,Q ∈ Sn
+.

– P ≥ Q if P −Q ∈ Sn
+

– P > Q if P −Q ∈ Sn
++.

– P 1/2 ∈ Rn×n denotes the (unique) matrix square-root of P ∈ Sn
++, i.e., the matrix

such that P 1/2P 1/2 = P .

• Functions

– ∥w∥∞ = supt∈T ∥w(t)∥ for a signal w : T → Rn where T ⊂ R.
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– Lfh(x) denotes the Lie derivatives of a scalar function h : Rn → R, along a
vector field f : Rn → Rn, Lfh(x) =

∂h
∂x
(x)f(x). If vector fields has an additional

dependency, e.g., f : Rn × Rp → Rn, the notation Lfh(x, y) = ∂h
∂x
(x)f(x, y) is

used.

Where possible, the following conventions are adopted. Calligraphic letters, e.g. S,U
represent sets. Lower case Greek letters represent scalars or scalar-valued functions. Latin
characters represent vectors or vector-valued functions. Lowercase letters are used for vec-
tors, while uppercase are used for matrices. Time is denoted by t or τ , and T or ∆t will
denote a duration of time. These conventions are not strictly followed.

We also use the following definitions [20, 90]:

Definition 1.1 (Class K). A function α : R≥0 → R≥0 is said to be of class K, (α ∈ K), if
it is continuous, α(0) = 0, and strictly-increasing.

Definition 1.2 (Class K∞). A function α : R≥0 → R≥0 is said to be of class K∞, (α ∈ K∞),
if α ∈ K and limr→∞ α(r) = ∞.

Definition 1.3 (Class Ke). , A function α : R → R is said to be of class Ke, (α ∈ Ke), if it
is continuous, α(0) = 0, and α is strictly increasing.

Definition 1.4 (Class L). A function σ : R≥0 → R≥0 is said to be of class L, (σ ∈ L), if it
is continuous, strictly decreasing,5 and lims→∞ σ(s) = 0.

Definition 1.5 (Class KL). A function β : R≥0 × R≥0 → R≥0 is said to be of class KL,
(β ∈ KL), if it is class K in its first argument, and class L in its second.

5Note some authors prefer non-increasing.
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CHAPTER 2

Safety-Critical Control

2.1 Safe Control as a Set Invariance Problem

In this section, we establish definitions for “safety,” and show how the synthesis of safe
control policies is specified mathematically. Following this, we highlight the primary tools
and foundational results used throughout the thesis.

2.1.1 Safety and Forward Invariance

Consider a dynamical system of the form

ẋ = F (t, x, u) (2.1)

where t ∈ R is time, x ∈ X ⊂ Rn is the system state, and u ∈ U ⊂ Rm is the control input.
Under a feedback policy π : T × X → U , the closed-loop system is

ẋ = Fcl(t, x) = F (t, x, π(t, x)). (2.2)

For a given initial condition x(t0) = x0 ∈ X , if Fcl is piecewise-continuous in t and
locally Lipschitz in x, there exists an interval [t0, t1) such that a unique solution exists to
the Ordinary Differential Equation (ODE). If we further assume Fcl is Lipschitz in x for all
x ∈ X , then a unique solution exists for all t ≥ t0. [92, Ch. 3]. For the remainder of this
section, assume unique solutions exist for all t ≥ t0.

Safety can be formalized through the notion of a ‘safe set,’ often denoted by S ⊂ X .1

The idea is that given a set of specifications (or equivalently, constraints) on what it means
for a robotic system to be operating safely, one can define a set of states, S, such that if the
robot state x ∈ S, we say that the robot is safe, at least instantaneously.

1All of the following definitions can be extended to the case where S is not a static set, but one that
changes with time. This will be discussed further in Section 3.2.
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Definition 2.1 (Instantaneously Safe). A state x ∈ X is instantaneously safe if x ∈ S.

This abstraction allows the safe set S to be defined in various ways depending on the
intended application. For instance, in an obstacle avoidance problem, the set S is the set of
states such that the robot is not in collision with an obstacle. In a multi-agent path planning
problem, the set S is the set of states where the inter-agent distance is above some threshold.
In a problem satellite docking problem, the set S could be the set of states where the chaser
satellite lies within a docking cone of the target satellite. The set S can also be defined for
multiple constraints at the same time. For instance, in a self-driving scenario S could be
the set of states that do not collide with nearby vehicles, and do not exceed the speed limit,
and stay within the lane. Multiple constraints can significantly complicate the analysis, but
conceptually, the intersection of the allowable states for each constraint can be thought of
as the safe set S.

Although a state may be instantaneously safe, this does not mean that the system will
be safe at future time. For instance, consider the obstacle avoidance scenario: if the robot
is near (but not yet in collision with) an obstacle, and is moving with high velocity towards
the obstacle, it may not be possible for the robot to avoid collision. In this way, although
the robot is instantaneously safe, it may not be possible to ensure the robot remains safe in
the future. Therefore, we extend the notions of safety to consider a trajectory of the system:

Definition 2.2 (Safe Trajectory). A trajectory x : T → X , defined over T ⊂ R, is a safe
trajectory if

x(t) ∈ S ∀t ∈ T . (2.3)

The goal then is to design a control policy u = π(t, x) such that closed-loop trajectories
from the possible initial conditions are all safe trajectories. Our primary tool for verifying if
a control policy is safe is forward invariance:

Definition 2.3 (Controlled Forward Invariance). A controller π : [t0,∞)×X → U renders
a set C ⊂ X forward invariant if for all t0 ∈ R and all initial conditions x0 ∈ C the
closed-loop system ẋ = Fcl(t, x) = F (t, x, π(t, x)),

x(t0) = x0
(2.4)

satisfies

x(t0) ∈ C =⇒ x(t) ∈ C (2.5)
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for all t ≥ t0. The set C is a controlled-invariant set.

This leads us to the notion of a safe controller :

Definition 2.4 (Safe Controller). A controller π : T × X → U is a safe controller if it
renders a set C forward invariant, and C ⊂ S.

Notice that we introduced a set C ⊂ X in the above definition. This is precisely because
we must distinguish between S, the set of instantaneously safe states, and C, the set of states
that can be rendered forward invariant by a controller π. Note, the set C need not be unique:
for any given S there can be multiple C sets, each associated with its own controller π.

Before we continue, we make a small remark about the existence of unique solutions for
all time. In the above, we have assumed that a unique solution exists for all t ≥ t0. It is
important to ensure that the chosen controller does not violate this assumption. Consider
the following example [32, Sec 4.1]:

Example 2.1. Consider a scalar system ẋ = u, and let S = {x ∈ R : x ≥ 0}. Then, it is
seemingly obvious that any controller u = π(x) ≥ 0 guarantees that x(t0) ≥ 0 =⇒ x(t) ≥ 0

for all t ≥ 0. However consider a controller π(x) = 1 + x2. In this case, the solution of
the closed-loop system from an initial condition x(t0) = 0 is x(t) = tan(t), which although
positive, also has finite escape time. Since it doesn’t satisfy x(t) ∈ S for all t ≥ t0, π is not
considered a safe controller.

2.1.2 Nagumo’s Theorem

Nagumo’s theorem [125] provides the necessary and sufficient conditions to establish whether
a closed-loop system remains within a set. Although the original is in German, Blanchini [32]
provides an excellent and modern presentation of the ideas.

Let the distance from a set be defined as follows:

Definition 2.5 (Distance from a set, [32, Def 4.5]). Given a set S ⊂ Rn, and a point y ∈ Rn,
the distance to S is

dist(y,S) = inf
x∈S

∥y − x∥ . (2.6)

We can now define the tangent cone of a set:

Definition 2.6 (Bouligand Tangent Cone, [32, Def. 4.6]). Given a closed set S ⊂ Rn, the
Bouligand Tangent Cone of S at x ∈ Rn is

TS(x) =

{
v ∈ Rn : lim inf

τ→0

dist(x+ τv,S)
τ

= 0

}
. (2.7)
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Notice that for any x ∈ IntS, TS(x) = Rn and for any x /∈ S, TS(x) = ∅. Therefore,
TS(x) is non-trivial only when x ∈ ∂S, that is, x is on the boundary of S. In such cases, the
tangent cone defines the directions we can perturb x but still remain within S.

Finally, we present Nagumo’s theorem:2

Theorem 2.1 (Nagumo’s theorem, [32, Cor. 4.8]). Consider a system ẋ = F (x), and assume
that for each initial condition x(0) ∈ O in an open set O ⊂ Rn, it admits a unique solution
defined for all t ≥ 0. Let S ⊂ O be a closed set. Then S is positively invariant if and only if

f(x) ∈ TS(x) ∀x ∈ S. (2.8)

Nagumo’s theorem provides necessary and sufficient conditions on the closed-loop dynam-
ics to ensure that the system remains within a set S. The task of designing safe controllers
is therefore seemingly straightforward: design a controller such that at the boundary of the
safe set, the closed-loop dynamics lie within the tangent cone of S. This turns out to be
not so trivial (and also not sufficient to guarantee safety). The remainder of the thesis is
devoted to designing such a controller, and extending the setting of Nagumo’s theorem to
be applicable for real-world robotic systems.

2.1.3 Control Barrier Functions (CBFs)

Over the past decade the notion of a CBF has gained traction since it provides an intuitive
and powerful method to synthesize safe controllers for nonlinear systems. The notion of
a CBF originates with the ideas of a Barrier Certificate, as presented in [132], and of a
Barrier Function [170]. The original papers on CBFs introduced both Reciprocal Control
Barrier Functions and Zeroing Control Barrier Functions. In recent years, the Zeroing CBFs
have become popular, and most extensions are now based on these CBFs. We review the
zeroing CBF formulation of safety next. Compared to (2.1) we will assume some additional
structure.

Consider a (time-invariant) control-affine dynamical system

ẋ = f(x) + g(x)u (2.9)

where, as before, x ∈ X ⊂ Rn is the state and u ∈ U ⊂ Rm is the control input. Suppose
f : X → Rn, g : X → Rn×m are both locally Lipschitz.

2Although presented for autonomous and uncontrolled systems, this can be extended to the non-
autonomous controlled setting in a straightforward way [31, Sec. 4.2].

16



Furthermore, suppose a set C can be defined as the zero-superlevel set of a function
h : X → R:

C = {x ∈ X : h(x) ≥ 0} (2.10a)

∂C = {x ∈ X : h(x) = 0} (2.10b)

Int C = {x ∈ X : h(x) > 0} (2.10c)

One should think of C as a subset of the safe set S.

Definition 2.7 (Control Barrier Function, [21, Def. 5]). Given a set C defined as in (2.10)
by a continuously differentiable function h : X → R, the function h is a (zeroing) Control
Barrier Function (CBF) defined on a set D with C ⊂ D ⊂ X for the system (2.9), if
there exists a class Ke function α such that

sup
u∈U

(Lfh(x) + Lgh(x)u) ≥ −α(h(x)) ∀x ∈ D, (2.11)

and ∂h/∂x ̸= 0 for any x ∈ ∂C.

Recall class Ke was defined in Definition 1.3, and Lfh : X → R, Lgh : X → R1×m are
defined as

Lfh(x) =
∂h

∂x
(x)f(x) Lgh(x) =

∂h

∂x
(x)g(x).

Given a CBF h, we can define a set-valued map Kcbf : D ⇒ U as

Kcbf(x) = {u ∈ U : Lfh(x) + Lgh(x)u ≥ −α(h(x))} (2.12)

for any x ∈ D.
Ames [21] established a sufficient condition for a controller to be a safe controller:

Theorem 2.2 ([21, Cor. 2]). Given a set C as defined in (2.10), if h is a CBF on D for the
system (2.9), then any Lipschitz continuous controller π : D → U such that π(x) ∈ Kcbf(x)

for all x ∈ D will render the set C forward invariant.

Naturally, if C ⊂ S, then π is a safe controller.
The benefit of this construction is that the requirement that π(x) ∈ Kcbf(x) is an affine

constraint on the possible values of u, regardless of whether f, g, h are nonlinear functions.
This makes it appealing for nonlinear systems, since we can construct an optimization-based
controller of the following form
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Definition 2.8 (CBF-QP Safety Filter). Let πd : X → U be a desired (but possibly unsafe)
controller for the system (2.9). Given a set C ⊂ S as defined in (2.10), if h is a CBF on D
for the system (2.9), the controller π : D → U defined by

π(x) = argmin
u∈U

∥u− πd(x)∥2 (2.13a)

subject to Lfh(x) + Lgh(x)u ≥ −α(h(x)) (2.13b)

is a CBF-QP safety filter.

Using Theorem 2.2, we can conclude the following (a similar result is presented in [178])

Corollary 2.3 (CBF-QP). Suppose π is a CBF-QP safety filter as in Definition 2.8. Fur-
ther, assume U = Rm is unbounded, and πd : X → U is Lipschitz continuous. Then
π : D → U is also Lipschitz continuous, and π is a safe controller for the system (2.9)
on the set S.

The implementation of the the safety filter is remarkably simple: (2.13) is a QP parame-
terized by x that can be solved very efficiently using libraries like [157], or analytically [178].

Remark 2.1. The optimization-based controller (2.13) has the analytic solution

π(x) =

πd(x) if ω(x) ≥ 0,

πd(x)− ω(x)

∥Lgh(x)∥2
Lgh(x)

T else.
(2.14)

where ω(x) = Lfh(x) + Lgh(x)πd(x) + α(h(x)). Equivalently,

π(x) = πd(x)−
min(0, ω(x))

∥Lgh(x)∥2
Lgh(x)

T (2.15)

The fundamental challenge with using the CBF-QP is that finding a CBF for a given
problem is not trivial. Although the community has developed many extensions of CBFs
to address real-world limitations, and even despite the presence of numerical methods to
find CBFs, in practice it remains a challenge to construct and validate a CBF for a given
application. See [20, 69] for a review of recent developments in this area.
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Figure 2.1: Visual representation of ICCBF method. The safe set S and two intermediate
sets C1 and C2 are drawn. The final inner safe set C∗ is the intersection of each of these sets,
and can be rendered forward invariant.

2.2 Input-Constrained Control Barrier Function

(ICCBF)

Prior work on CBFs [19, 20, 67, 71] has largely focused on systems where a sufficiently
large control authority is available to ensure forward invariance of the safe set. However
in the presence of input constraints, only a subset of the safe set may be rendered forward
invariant, which we term the inner safe set. A few methods have been proposed to find the
inner safe set. These include reachability analysis by solving a Hamilton-Jacobi equations [71,
119] and Sum of Squares (SOS), which employ the positivstellensatz theorem to provide a
certificate of safety [33, 177]. Both methods scale poorly with the dimension of the state-
space. Some methods have also been proposed for specific classes of systems, e.g. Euler-
Lagrange systems [53] or mechanical systems in a manifold [173].

In this section, we introduce the notion of an ICCBF. We show that an ICCBF guarantees
that an input constrained controller can render the super-level set of the ICCBF forward
invariant. Furthermore, we show that ICCBFs represent a generalization of Higher Order
Control Barrier Functions (HOCBFs) [176], enabling synthesis of input-constrained con-
trollers for safety functions of non-uniform relative degree. Finally, the method is applied to
an adaptive cruise control problem [18], and a spacecraft rendezvous problem, demonstrating
that ICCBFs define a safe controller that respects input constraints.
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2.2.1 Problem Formulation and Preliminaries

Problem Setup

Consider a nonlinear, control-affine dynamical system, with state x ∈ X ⊂ Rn and control
input u ∈ U ⊂ Rm

ẋ = f(x) + g(x)u, (2.16)

where f : X → Rn, g : X → Rn×m are sufficiently smooth, as will be discussed in 2.2.2.
We assume these functions are known, and the system state is measured exactly. Under a
Lipschitz continuous feedback law u = π(x), the closed-loop system is

ẋ = f(x) + g(x)π(x). (2.17)

We define a state x as safe, if it lies in a set S, the 0-superlevel set of a continuously
differentiable function h : X → R:

S ≜ {x ∈ X : h(x) ≥ 0} (2.18)

∂S ≜ {x ∈ X : h(x) = 0} (2.19)

Int(S) ≜ {x ∈ X : h(x) > 0} (2.20)

The set S is referred to as the safe set. We assume this set is closed, non-empty and simply
connected. Recall the definition of forward invariance as in Definition 2.3 adapted to this
setting:

Definition 2.9. A set S is rendered forward invariant by a feedback controller π : S → U ,
if for the closed-loop system (2.17), x(0) ∈ S implies x(t) ∈ S for all t ≥ 0.

Due to input constraints however, there may not exist a controller which renders the safe
set forward invariant (Example 2.2). We propose the definition of an inner safe set.

Definition 2.10. A non-empty closed set C∗ is an inner safe set of the safe set S for the
dynamical system (2.16), if C∗ ⊆ S and there exists a feedback controller π : C∗ → U such
that C∗ is rendered forward invariant by π.

Example 2.2. Consider the following scalar dynamical system with input and safety con-
straints:

ẋ = x+ u, U = [−1, 1], S = {x ∈ R : x ≤ 2}
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i.e. h(x) = 2− x. Now consider the boundary state x = 2 ∈ S. Since

ḣ = −2− u =⇒ ḣ ≤ −1 ∀u ∈ U ,

i.e., all closed-loop trajectories starting at x(0) = 2 leave the safe set. Thus S cannot be
rendered forward invariant. The set C∗ = {x : x ≤ 1} is an inner safe set. △

Now, we can state the main objective:

Problem 2.1. Given the system (2.16), find a closed set C∗ ⊆ S and a feedback controller
π : C∗ → U , such that for any x(0) ∈ C∗, the closed-loop trajectories of (2.17) satisfy
x(t) ∈ C∗ for all t ≥ 0.

In words, the objective is to find a subset of the safe set, and a corresponding feedback
controller that renders the subset forward invariant.

Set Invariance

Nagumo’s theorem provides a necessary and sufficient condition for the forward invariance
of a set S. In this setting, Nagumo’s theorem simplifies to:

Lemma 2.4. Consider the system (2.16). Let the set S be defined by a continuously differ-
entiable function h : X → R, as per (2.18-2.20). Consider a Lipschitz continuous feedback
controller π : S → U , such that for any initial condition x(0) ∈ S, the closed-loop sys-
tem (2.17) admits a globally unique solution. Then set S is forward invariant if and only
if

Lfh(x) + Lgh(x)π(x) ≥ 0 ∀x ∈ ∂S. (2.21)

In [19, 20], a stronger notion of the control barrier function is introduced:

Definition 2.11 (Control Barrier Function [20]). Let S ⊂ X ⊂ Rn be the superlevel set of
a continuously differentiable function h : X → R. h is a CBF if there exists a class Ke,∞

function α such that for the control system (2.16):

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)) (2.22)

for all x ∈ X .

Lemma 2.5 ([20], Theorem 2). Let S ⊂ Rn be a set defined as the superlevel set of a
continuously differentiable function h : X ⊂ Rn → R. If h is a CBF on X , and dh/dx(x) ̸= 0
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for all x ∈ ∂C, then any Lipschitz continuous controller π(x) ∈ KCBF, where

KCBF(x) = {u ∈ U : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0}, (2.23)

for the control system (2.17), renders the set S safe.

In this section, we focus on cases where h(x) defining the safe set S is not a valid control
barrier function.

2.2.2 Main Result

In this section we define Input Constrained Control Barrier Functions (ICCBFs). To aid
the reader, first the method is explained conceptually, and formal definitions are presented
second.

Motivation

Suppose the safe set S associated with h cannot be rendered forward invariant by any
feedback controller π(x), since there exist some states where it would require u ̸∈ U to
render safe. We wish to remove these states from S. We define a function b1 : X → R and
a set C1 (visualized in Figure 2.1) as follows

b1(x) = inf
u∈U

[Lfh(x) + Lgh(x)u+ α0(h(x))] (2.24)

C1 = {x ∈ X : b1(x) ≥ 0} (2.25)

where α0 is some user specified class K function. Since an infimum over U is taken, b1 only
depends on x, and not u.

The set C1 has a useful property: Suppose there exists a point x ∈ ∂S and x ∈ C1, i.e.,
h(x) = 0 and b1(x) ≥ 0. Then, from (2.24),

x ∈ ∂S ∩ C1 =⇒ inf
u∈U

[Lfh(x) + Lgh(x)u] ≥ 0 (2.26)

=⇒ Lfh(x) + Lgh(x)u ≥ 0, ∀u ∈ U . (2.27)

Thus the closed-loop trajectory cannot leave S through x. Notice that if there exists a
Lipschitz continuous controller π which renders C1 forward invariant, it is immediate S ∩ C1
is also forward invariant: any x(t) that reaches the boundary ∂S must lie in C1 (by assumption
on π), and thus by (2.27), x(t) also cannot leave S.
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The problem now is to find the controller that renders C1 forward invariant. If this
cannot be done, the steps can be repeated: define b2(x) = infu∈U [ḃ1(x, u) + α1(b1(x))] and
C2 = {x ∈ X : b2(x) ≥ 0}. Now any controller that renders C2 forward invariant also renders
C1 ∩ C2 forward invariant, and therefore the set C∗ = S ∩ C1 ∩ C2 is also forward invariant by
the same controller. This idea is formalized in the next subsection.

ICCBFs

Consider the dynamical system (2.16) with bounded control inputs u ∈ U and a safe set S
defined by a function h : X → R, as per (2.18-2.20). We define the following sequence of
functions:

b0(x) = h(x) (2.28a)

b1(x) = inf
u∈U

[Lfb0(x) + Lgb0(x)u+ α0(b0(x))] (2.28b)

...

bN(x) = inf
u∈U

[LfbN−1(x) + LgbN−1(x)u+ αN−1(bN−1(x))], (2.28c)

where each αi is a class K function, and N is a positive integer. We assume the functions
f, g, h are sufficiently smooth such that bN and its derivative are defined. The time derivative
ḃi = Lfbi(x) + Lgbi(x)u is still affine in u. Next, we define a family of sets,

C0 = {x ∈ X : b0(x) ≥ 0} = S (2.29a)

C1 = {x ∈ X : b1(x) ≥ 0} (2.29b)
...

CN = {x ∈ X : bN(x) ≥ 0}. (2.29c)

The intersection of these sets is C∗, assumed closed, non-empty and without isolated points:

C∗ = C0 ∩ C1 ∩ ... ∩ CN . (2.30)

Definition 2.12. For the dynamical system (2.17) with safe set S and continuously differ-
entiable class K functions α0, ..., αN−1, if there exists a class K function αN such that

sup
u∈U

[LfbN(x) + LgbN(x)u+ αN(bN(x))] ≥ 0 ∀x ∈ C∗, (2.31)

then bN is an ICCBF.
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Note, this does not require bN to be a CBF on CN . The definition only requires condi-
tion (2.31) to hold for x ∈ C∗, a subset of CN .

Theorem 2.6 (Main Result). Given the input constrained dynamical system (2.16), if bN is
an ICCBF, then any Lipschitz continuous controller π : C∗ → U such that π(x) ∈ KICCBF(x),
where

KICCBF(x) = {u ∈ U : LfbN(x) + LgbN(x)u ≥ −αN(bN(x))} (2.32)

renders the set C∗ ⊆ S (2.30) forward invariant.

Proof. Since u is a Lipschitz continuous controller, the closed-loop system (2.17) is also
Lipschitz continuous. To show forward invariance of C∗, we use Nagumo’s theorem on the
closed-loop system. In particular, we show that

x ∈ C∗, π(x) ∈ KICCBF(x) and bi(x) = 0

=⇒ dbi
dx

[f(x) + g(x)π(x)] ≥ 0, (2.33)

We show (2.33) holds for each i ∈ I(x) = {i : bi(x) = 0}:
Cases i ∈ {0, ..., N − 1}: Consider any x ∈ C∗ ∩ ∂Ci. Since C∗ ⊆ Ci+1, x ∈ ∂Ci ∩ Ci+1. By

(2.28, 2.29),

inf
u∈U

[Lfbi(x) + Lgbi(x)u] ≥ 0

∴ Lfbi(x) + Lgbi(x)u ≥ 0, ∀u ∈ U (2.34)

and since π(x) ∈ KICCBF(x) ⊆ U , (2.33) is satisfied.
Case i = N : Consider x ∈ C∗ ∩ ∂CN . Since bN is an ICCBF and bN(x) = 0, by (2.29c,

2.32),

LfbN(x) + LgbN(x)π(x) ≥ 0 ∀π(x) ∈ KICCBF(x), (2.35)

thus satisfying (2.33).
In conclusion, we have shown that condition (2.33) is satisfied for all i ∈ I(x), and

therefore the conditions of Nagumo’s theorem are satisfied, completing the proof.

Remark 2.2. The practical value of this construction is that for a given system, a set S
of safe states of practical importance can be specified, which may not be rendered forward
invariant under the given system dynamics. By using ICCBFs, we remove some states from
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the set S, and construct an inner set for which we can find a controller that renders it forward
invariant.

Remark 2.3. A quadratic program based feedback controller can be used for polytopic input
constraints, U = {u : Pu ≤ q}:

π(x) = argmin
u∈Rm

uTu

subject to LfbN(x) + LgbN(x)u ≥ −αN(bN(x))

Pu ≤ q,

provided suitable regularity conditions hold, for instance LgbN(x) is linearly independent of
the rows of P [75, 122]. Note, this QP is always guaranteed to be feasible.

We would like to note a useful special case, the simple ICCBF:

Definition 2.13. In the above construction, if C∗ is a strict subset of CN , i.e., C∗ ⊂ CN ,
then bN is a simple ICCBF.

Theorem 2.7. For the dynamical system (2.16), if bN is a simple ICCBF, all Lipschitz
continuous controllers π : C∗ → U render the set C∗ forward invariant.

Proof. By definition, since bN is a simple ICCBF, C∗ is a strict subset of CN . Then C∗∩∂CN =

∅, the null set, i.e., there does not exist a x ∈ C∗ such that bN(x) = 0. Following Theorem 2.6,
we do not need to consider case where i = N in condition (2.33). The remaining cases, with
i ∈ {0, ..., N−1} satisfy condition (2.33) for all π(x) ∈ U . Therefore, any Lipschitz continuous
π : C∗ → U admits globally unique solutions and satisfies condition (2.33), completing the
proof.

Intuitively, the existence of a simple ICCBF represents a system where the dynamics at
the boundaries of C∗ are such that the unforced dynamics f(x) dominate the forcing term
g(x)π(x) in driving the system towards safety. If a simple ICCBF is found, no safety critical
controller is needed for the system to ensure state trajectories remain within the safe set,
provided the system is initialized within C∗.

Remark 2.4. Higher Order CBFs, as in [176], are a special case of ICCBFs. For instance,
in systems of relative degree 2, Lgh(x) = 0 for all x ∈ S. In this case, in the construction of
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ICCBFs we have

b1(x) = inf
u∈U

[Lfh(x) + Lgh(x)u+ α0(h(x))]

= inf
u∈U

[Lfh(x) + α0(h(x))]

= Lfh(x) + α0(h(x)) (2.36)

which is exactly the function defined in [176]. This repeats for higher relative degrees. For
a system with relative degree ρ, the first ρ expressions of ICCBFs are identical to those
of HOCBFs. Moreover, ICCBFs can handle systems with non-uniform relative degree, by
choosing N greater or equal to the largest relative degree of the system in S.

Remark 2.5. The search (over integers N and class K functions αi) and validation for
ICCBFs (i.e., verifying (2.31)) can be complicated, as is the case with Lyapunov functions
in general. For practical implementation, we can solve the following optimization problem:

γ = minimize
x∈C∗

supu∈U [ḃN(x, u) + αN(bN(x))] (2.37)

By the definition, bN is an ICCBF if and only if the optimization problem is feasible, with
solution γ ≥ 0. Since this optimization is nonlinear, unless a guaranteed global optimizer is
used, this can only be used to invalidate bN as a ICCBF. For our experiments, we manually
checked a few (approx. 6) N and αi until γ ≥ 0. Whether a finite N exists for a given
dynamical system such that bN is an ICCBF remains an open question.

2.2.3 Simulations

Adaptive Cruise Control

As a demonstration, we apply ICCBFs to the Adaptive Cruise Control (ACC) problem of [18].
Consider a point-mass model of a vehicle moving in a straight line. The vehicle is following a
vehicle d distance in-front, moving at a known constant speed v0. The objective is to design
a controller to accelerate to the speed limit but prevent the vehicles from colliding.

As in [18], the safety constraint is specified as d ≥ 1.8v. Defining the state x = [d, v]T ,
the dynamical model is[

ḋ

v̇

]
=

[
v0 − v

−F (v)/m

]
+

[
0

g0

]
u, U = {u : |u| ≤ 0.25}

where u is the control input, F (v) = f0 + f1v + f2v
2 models resistive forces on the vehicle,
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Figure 2.2: Figures (a-d): State-space diagrams indicating the sets (a) S, (b) C1, (c) C2 and
(d) C∗. The horizontal dashed line in (a) indicates v0, the speed of the car in-front. Figure (d)
represents the inner safe set C∗ that is rendered forward invariant. Figures (e-g): Simulation
results for speed, control input and safety under the CLF-CBF-CBF controller [18] and the
ICCBF-CBF.
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m is the mass of the vehicle, g0 is acceleration due to the gravity. The safe set S is

S = {x ∈ X : h(x) = x1 − 1.8x2 ≥ 0}

and we can verify that S is not forward invariant under the input constraints. Thus, h is
not a CBF, and we will apply ICCBFs to find an inner safe set.

We choose, arbitrarily, N = 2 and the class K functions

α0(h) = 4h, α1(h) = 7
√
h, α2(h) = 2h,

to define the functions b1, b2 and sets C1, C2. To (approximately) verify that b2 is an ICCBF,
the optimization (2.37) was used, and γ = 2.33 was found.

The sets are visualized in Figure 2.2. The interior of a set is shaded, and the boundary
of the set is indicated with a thick line. Where there exists a feasible control input to keep
trajectories within the set, the line is solid, and where no feasible control input will keep
trajectories within the set, the line is dashed. C∗, the intersection of S, C1, C2, is visualized
in Figure 2.2(d). The following controller is used:

π(x) = argmin
u∈R

1
2
(u− πd(x))

2

subject to Lfb2(x) + Lgb2(x)u ≥ −2b2(x)

u ∈ U

where πd(x) is the desired acceleration. The desired acceleration is computed using the
Control Lyapunov Function V (x) = (x2 − vmax)

2, where vmax = 24 is the speed limit. Thus,
πd(x):

LfV (x) + LgV (x)πd(x) = −10V (x)

We compare our controller to the CLF-CBF-QP [18]:

argmin
u∈R,δ∈R≥0

1
2
u2 + 0.1δ2

subject to LfV (x) + LgV (x) ≤ −10V (x) + δ

Lfh(x) + Lgh(x)u ≥ −2h(x)

and clip of the solutions of the QP such that u∗(x) lies in the range of feasible control inputs.
In Figures 2.2 (e-g), the proposed controller (green) is compared to the CLF-CBF-QP

controller (blue). The CLF-CBF-QP reaches the input-constraint at t = 5.9 seconds. The
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Figure 2.3: (a, b) Schematic of the rendezvous problem. (a) represents the Local-Vertical
Local-Horizontal frame. (b) details the target and chaser spacecrafts. The target spacecraft
is rotating with constant angular velocity ω. The red dashed lines indicate the Line-of-Sight
cone, which the chaser spacecraft must remain within. (c-e) show snapshots of the trajectory
at three instances. The green dot represents the initial condition. (f) shows the 1-norm of
the propulsive force and (g) indicates the line of sight angle θ.

input limits force the system to leave the safe set. The ICCBF-QP remains feasible and
safe for the entire duration, by applying brakes early, at t = 2.9 seconds, instead of t =

5.0 seconds. Thus, by explicitly accounting for input constraints ICCBF-QP controller keeps
the input-constrained system safe, where the CLF-CBF-QP doesn’t.

Autonomous Rendezvous

In this section, the ICCBF method is applied to an autonomous rendezvous operation
(adapted from [130]) between a chaser spacecraft modeled as a point mass, and a target
body, e.g. the International Space Station (ISS) (Figure 2.3). The target is modeled as a
point on a disk of radius ρ = 2.4 m rotating with a constant angular velocity ω = 0.6◦/sec
relative to the Local-Vertical Local-Horizontal (LVLH) frame. The objective is to determine
the appropriate propulsive forces to bring the chaser spacecraft from a range of 100 m to
3 m. The safety constraint is to maintain a line-of-sight (LOS) constraint: the spacecraft’s
position must remain within a γ = 10◦ cone of the docking axis. The system state x ∈ R5 is
the relative position (px, py) and velocity (vx, vy) and angle of the docking port ψ. Instead of
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using the (linearized) Clohessy-Wiltshire equations (as in [130]), we use the exact equations
of relative motion3:

d

dt


px

py

vx

vy

ψ

 =



vx

vy

n2px + 2nvy +
µ
r2

− µ(r+px)
r3c

n2py − 2nvx − µpy
r3c

ω


+

1

mc


0

0

ux

uy

0

 (2.38)

where rc =
√
x2 + y2 is the relative distance to the chaser, r = 6771 km is the radius of orbit

of the ISS, µ = 398, 600 km3/s2 is the gravitational parameter of Earth, n =
√
µ/r3 is the

mean motion of the target satellite around the Earth, ω = 0.6◦/s is the angular velocity of
the target relative to the LVLH frame, and mc = 1000 kg is the mass of the chaser vehicle,
assumed constant during the rendezvous. The control inputs (ux, uy) are the propulsive
forces. Suppose the forces are 1-norm bounded, |ux| + |uy| ≤ 0.25 kN. The LOS constraint
is h(x) ≥ 0, where

h(x) = cos θ − cos γ

=
r⃗c−p · ê
||r⃗c−p||

− cos(γ),

and r⃗c−p = [(px − ρ cosψ), (py − ρ sinψ)]T is the position vector of the chaser relative to the
docking port, and ê = [cosψ, sinψ]T is the docking axis vector. We use a CLF to guide the
chase to the the docking port:

V (x) =

(
vx +

px − ρ cosψ

10

)2

+

(
vy +

py − ρ sinψ

10

)2

.

To construct the ICCBF, again N = 2 was chosen. The following class K functions were
used:

α0(h) = 0.25h, α1(h) = 0.85h, α2(h) = (0.05 + k)h

where k > 0 is a parameter we allow the Quadratic Program to minimize, as in [67], and
verified approximately. Thus, the controller u∗ is the solution to u in the following quadratic

3In this work, only gravitational forces due to the Earth and propulsive forces are modeled, but other
nonlinear effects like solar radiation pressure or air resistance can also be included.

30



optimization problem

argmin
u∈R2;δ,k∈R≥0

1
2
(u2x + u2y) + 10δ + 50k

subject to LfV (x) + LgV (x)u ≤ −0.1V (x) + δ

Lfb2(x) + Lgb2(x)u ≥ −(0.05 + k)b2(x)

|ux|+ |uy| ≤ 0.25

Figure 2.3(c-g) show simulation results of the rendezvous operation. The chaser is ini-
tialized at (100, -10) meters from the target spacecraft, and follows the trajectories drawn
in (c-e), demonstrating a successful transfer. The 1-norm of the computed thrust force
is indicated in (f), and (g) shows that the LOS constraint is satisfied at all times during
the transfer. 3D animations, videos and source code for both case studies are available at
https://github.com/dev10110/Input-Constrained-Control-Barrier-Functions.

2.2.4 Conclusion

In this section we have presented a framework that allows input constraints to be explicitly
included in the construction of control barrier functions and to guarantee that safety is
maintained with an input-constrained controller. The construction identifies an inner safe
set and a feedback controller to render the subset safe. We demonstrated the method on
an adaptive cruise control problem and a spacecraft rendezvous problem. An optimization
based method was used to verify the conditions of the ICCBF. Directions for future work
include investigating numerically efficient methods to automate the search of ICCBFs, and to
compare the complexity with other reachability methods, in particular for systems with high-
dimensional states. Finally, the robustness of this controller to noise and model mismatch
could also be investigated.
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2.3 Observer-Controller Interconnections

In recent years, Control Barrier Functions (CBFs) [21] have become a popular method to
design safety-critical controllers, since a certifiably safe control input can be computed ef-
ficiently for nonlinear systems. Many extensions have been proposed to address specific
challenges in using CBFs, including robustness [13, 84], sampled-data considerations [36]
and integration with high-level planners [8]. However, these works assume the controller has
access to perfect state information. In most practical systems, the true state of the system is
unknown and must be reconstructed using only (often noisy) measurements obtained from
sensors. In such systems, it is common to design a full-state feedback controller, and then
replace the state by an estimate provided by an observer [30, Sec. 8.7]. It is well established
that a controller capable of stabilizing a system with perfect state information may fail to
do so when using the state estimate [91, Ch. 12]. Similarly, the use of imperfect information
for feedback control may cause safety violations.

Here, we study the implications on safety that arise due to imperfect and partially avail-
able information, and propose a method to design safe observer-controllers. This important
challenge has only recently received some attention. Measurement-Robust CBFs [57] have
been proposed to address control synthesis in output-feedback, in the context of vision-based
control. The authors assume sensors are noiseless and an imperfect inverse of the measure-
ment map is known, i.e. from a single measurement, a ball containing the true state is known.
Using this bound, a second-order cone program-based controller was proposed, although the
Lipschitz continuity of this controller is yet to be established [57]. For many safety-critical
systems, the measurement maps are non-invertible, limiting the scope for this method.

In [51], a safety critical controller is proposed for stochastic systems, and a probabilistic
safety guarantee is proved. The authors consider linear (non-invertible) measurement maps,
additive gaussian disturbances, and specifically use the Extended Kalman Filter (EKF) as
the observer. In [83] this work is extended to consider a broader class of control-affine
systems, and probabilistic guarantees of safety over a finite forward interval are obtained.
Establishing safety in a deterministic (non-probabilistic) sense or using alternative observers
remains challenging. It has also been demonstrated that in some cases, safety guarantees
can be obtained by modeling the system as a Partially Observable Markov Decision Process,
e.g. [11], although such methods are computationally expensive for high-dimensional systems
and are more suitable for systems with discrete action/state spaces.

The primary contribution of this section is in synthesizing safe and robust interconnected
observer-controllers in such a manner as to establish rigorous guarantees of safety, despite
bounded disturbances on the system dynamics and sensor measurements. We propose two
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approaches to solve this problem, owing to the wide range of nonlinear observers [30]. The
first approach utilizes the class of Input-to-State Stable observers [150]. The second approach
employs the more general class of ‘Bounded Error’ observers, in which a set containing the
state estimation error is known at all times. This class of observers includes the Deterministic
Extended Kalman Filter (DEKF) [91, Ch. 11.2], Lyapunov-based sum-of-squares polynomial
observers [133], and others discussed later. We show that our safe estimate-feedback con-
troller can be obtained by solving quadratic programs (QP), and prove Lipschitz continuity
of these controllers, allowing for low-computational complexity real-time implementation.
The efficacy of the methods is demonstrated both in simulations and in experiments on a
quadrotor.

2.3.1 Preliminaries and Background

In this section, let γf denote the Lipschitz constant of a Lipschitz-continuous function f :

Rn → Rm.

System

Consider a nonlinear control-affine system:

ẋ = f(x) + g(x)u+ gd(x)d(t), (2.39a)

y = c(x) + cd(x)v(t), (2.39b)

where x ∈ X ⊂ Rn is the system state, u ∈ U ⊂ Rm is the control input, y ∈ Rny is the
measured output, d : R≥0 → Rnd is a disturbance on the system dynamics, and v : R≥0 → Rnv

is the measurement disturbance. We assume d and v are piecewise continuous, bounded
disturbances, supt ∥d(t)∥∞ = d̄ and ∥v(t)∥∞ ≤ v̄ for some known d̄, v̄ < ∞. The functions
f : X → Rn, g : X → Rn×m, c : X → Rny , gd : X → Rn×nd , and cd : X → Rny×nv are
all assumed to be locally Lipschitz continuous. Notice that gd(x)d(t) accounts for either
matched or unmatched disturbances.

In observer-controller interconnections, the observer maintains a state estimate x̂ ∈ X ,
from which the controller determines the control input. The observer-controller interconnec-
tion is defined to be of the form:

˙̂x = p(x̂, y) + q(x̂, y)u, (2.40a)

u = π(t, x̂, y), (2.40b)
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where p : X ×Rny → Rn, q : X ×Rny → Rn×m are locally Lipschitz in both arguments. The
feedback controller π : R≥0×X ×Rp → U is assumed piecewise-continuous in t and Lipschitz
continuous in the other two arguments. Then, the closed-loop system formed by (2.39, 2.40)
is

ẋ = f(x) + g(x)u+ gd(x)d(t), (2.41a)
˙̂x = p(x̂, y) + q(x̂, y)u, (2.41b)

x(0) = x0, x̂(0) = x̂0, (2.41c)

where y and u are defined in (2.39b) and (2.40b) respectively. Under the stated assumptions,
there exists an interval I = I(x0, x̂0) = [0, tmax(x0, x̂0)) over which solutions to the closed-
loop system exist and are unique [92, Thm 3.1].

Safety

Safety is defined as the true state of the system remaining within a safe set, S ⊂ X , for all
times t ∈ I. The safe set S is defined as the super-level set of a continuously-differentiable
function h : X → R, as in (2.10):

S = {x ∈ X : h(x) ≥ 0}. (2.42)

A state-feedback controller4 π : R≥0 × X → U renders system (2.39) safe with respect
to the set S, if for the closed-loop dynamics ẋ = f(x) + g(x)π(t, x) + gd(x)d(t), the set S is
forward invariant, i.e., x(0) ∈ S =⇒ x(t) ∈ S ∀t ∈ I. In output-feedback we define safety
as follows:

Definition 2.14. An observer-controller pair (2.40) renders system (2.39) safe with
respect to a set S ⊂ X from the initial-condition sets X0, X̂0 ⊂ S if for the closed-loop
system (2.41),

x(0) ∈ X0 and x̂(0) ∈ X̂0 =⇒ x(t) ∈ S ∀t ∈ I. (2.43)

Note the importance of the observer-controller connection, i.e., using only x̂(t), we must
obtain guarantees on x(t).

4In state-feedback the control input is determined from the true state, u = π(t, x). In estimate-feedback
the input is determined from the state estimate and measurements, u = π(t, x̂, y).
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Control Barrier Functions

Control Barrier Functions (CBFs) have emerged as a tool to characterize and find controllers
that can render a system safe [21]. Robust-CBFs [84] also account for the disturbances d(t)
in (2.39a). We introduce a modification to reduce conservatism, inspired by [13].

Definition 2.15. A continuously differentiable function h : X → R is a Tunable Robust
CBF (TRCBF) for system (2.39) if there exists a class K function α, and a continuous,
non-increasing function κ : R≥0 → R with κ(0) = 1, s.t.

sup
u∈U

Lfh(x) + Lgh(x)u+ α(h(x)) ≥ κ(h(x)) ∥Lgdh(x)∥ d̄, ∀x ∈ S. (2.44)

Examples include κ(r) = 1 and κ(r) = 2/(1 + exp(r)). Given a TRCBF h for (2.39), the
set of safe control inputs is

Ktrcbf (x) = {u ∈ U : Lfh(x) + Lgh(x)u− κ(h(x)) ∥Lgdh(x)∥ d̄ ≥ −α(h(x))}, (2.45)

and a safe state-feedback controller is obtained by solving a QP, as in [84, Eq. 30]. The
main question is:

Problem 2.2. Given a system (2.39) with disturbances of known bounds ∥d(t)∥∞ ≤ d̄,
∥v(t)∥∞ ≤ v̄, and a safe set S defined by (2.42), synthesize an interconnected observer-
controller (2.40) and the initial condition sets X0, X̂0 to render the system safe.

We study systems subject to disturbances with a known bound. We will use this bound to
derive sufficient conditions on the control policy to guarantee safety satisfaction. In practice,
a conservative upper bounds can be used, although future work will address the probabilistic
safety guarantees that are possible under probabilistic disturbances.

2.3.2 Main Results

2.3.2.1 Approach 1

Approach 1 relies on defining a set of state estimates, Ŝ ⊂ X , such that if the estimate x̂
lies in Ŝ, the true state x lies in the safe set S. The controller is designed to ensure x̂ ∈ Ŝ
at all times. We consider Input-to-State Stable observers:

Definition 2.16 (Adapted from [150]). An observer (2.40) is an Input-to-State (ISS)
Observer for system (2.39), if there exists a class KL function β continuously differentiable
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wrt to the second argument, and a class K function η such that

∥x(t)− x̂(t)∥ ≤ β(∥x(0)− x̂(0)∥ , t) + η(w̄), ∀t ∈ I, (2.46)

where w̄ = max(d̄, v̄).

Various methods to design ISS observers for nonlinear systems have been developed, and
reader is referred to [14, 23, 30, 81, 150] and references within for specific techniques.

The key property of an ISS observer is that the estimation error is bounded with a known
bound: for any δ > 0, there exists a continuously differentiable, non-increasing function
Mδ : R≥0 → R≥0, such that

∥x(0)− x̂(0)∥ ≤ δ ⇒ ∥x(t)− x̂(t)∥ ≤Mδ(t) ∀t ∈ I. (2.47)

Comparing (2.46) and (2.47), Mδ(t) = β(δ, t) + η(w̄). Define

Ŝ = {x̂ ∈ X : h(x̂)− γhMδ(t) ≥ 0}, (2.48)

the set of safe state-estimates, and we obtain the property x̂(t) ∈ Ŝ =⇒ x(t) ∈ S by the
Lipschitz continuity of h.5 Then the conditions to guarantee safety are as follows:

Definition 2.17. A continuously differentiable function h : X → R is an Observer-Robust
CBF for system (2.39) with an ISS observer (2.40a) of known estimation error bound (2.47),
if there exists an extended class K function α s.t.6

sup
u∈U

Lph(x̂, y) + Lqh(x̂, y)u ≥ −α(h(x̂)− γhMδ(0)) (2.49)

for all x̂ ∈ S, and all y ∈ Y(x̂) = {y : y = c(x) + cd(x)v(t) | ∥x− x̂∥ ≤ Mδ(0), ∥v∥ ≤ v̄}, an
overapproximation of the set of possible outputs.7

Theorem 2.8. For system (2.39), suppose the observer (2.40a) is ISS with estimation error
bound (2.47). Suppose S is defined by an Observer-Robust CBF h : X → R associated with

5By Lipschitz continuity, |h(x)− h(x̂)| ≤ γh ∥x− x̂∥ =⇒ h(x̂)− γh ∥x− x̂∥ ≤ h(x). Therefore, if x̂ ∈ Ŝ,
then 0 ≤ h(x̂)− γhMδ(t) ≤ h(x̂)− γh ∥x− x̂∥ ≤ h(x), i.e., x ∈ S. Thus, x̂ ∈ Ŝ =⇒ x ∈ S.

6Recall the notation Lph(x̂, y) =
∂h
∂x (x̂)p(x̂, y).

7Y is defined using Mδ(0) instead of δ since Y(x̂(t)) must contain the set of possible outputs at time t
for all t ∈ I.
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extended class K function α. If the initial conditions satisfy

x̂(0) ∈ X̂0 = {x̂ ∈ S : h(x̂) ≥ γhMδ(0)}, (2.50)

x(0) ∈ X0 = {x ∈ S : ∥x(0)− x̂(0)∥ ≤ δ}, (2.51)

then any Lipschitz continuous estimate-feedback controller u = π(t, x̂, y) ∈ Korcbf (t, x̂, y)

where

Korcbf (t, x̂, y) = {u ∈ U : Lph(x̂, y) + Lqh(x̂, y)u ≥ −α (h(x̂)− γhMδ(t)) + γhṀδ(t)} (2.52)

renders the system safe from the initial-condition sets X0, X̂0.

Proof. Consider the function H(t, x̂) = h(x̂) − γhMδ(t). By the Lipschitz continuity of h,
and (2.47), H(t, x̂) ≥ 0 =⇒ h(x) ≥ 0. The total derivative of H is

Ḣ =
∂H

∂t
+
∂H

∂x̂
˙̂x = −γhṀδ + Lph(x̂, y) + Lqh(x̂, y)u

therefore, for any π(t, x̂, y) ∈ Korcbf (t, x̂, y) we have Ḣ ≥ −α(H). Since H(0, x̂0) ≥ 0 (from
the initial condition (2.50)), H(t, x̂) ≥ 0,∀t ∈ I, completing the proof.

Remark 2.6. Under the same assumptions as Theorem 2.8, if U = Rm and a desired control
input πdes : R≥0 ×X → Rm is provided, a QP-based safe estimate-feedback controller is

π(t, x̂, y) = argmin
u∈Rm

∥u− πdes(t, x̂)∥2 (2.53a)

subject to Lph(x̂, y) + Lqh(x̂, y)u ≥ −α(h(x̂)− γhMδ(t)) + γhṀδ(t) (2.53b)

Remark 2.7. The constraint in (2.53) does not explicitly depend on the disturbances d(t)
and v(t), since the effect of these disturbances is captured by the estimation error bound
Mδ(t). Furthermore, since γhṀδ(t) ≤ 0,8 the constraint (2.53) is easier to satisfy for higher
convergence rates of the observer.

Remark 2.8. For a linear class K function, α(r) = γαr, if Ṁδ ≤ −γαMδ(t), a sufficient
condition for (2.53) is

Lph(x̂, y) + Lqh(x̂, y)u ≥ −γαh(x̂).

8Since Mδ(t) = β(δ, t) + η(w̄), and β is a class KL function, Ṁδ(t) = ∂β/∂t < 0. Finally since γh ∈ R≥0

is a Lipschitz constant, γhṀδ(t) ≤ 0.
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a) ISS Observers b) BE observers

Figure 2.4: Depiction of Input-to-State Stable observers and Bounded-Error observers. (a)
In ISS observers, the estimation error is bounded by a norm-ball, and must be non-increasing
in time. (b) In BE observers, the state estimate must be contained in a bounded set P(t, x̂).

which does not depend on the bound Mδ(t) or Lipschitz constant γh. In other words, if the
observer converges faster than the rate at which the boundary of the safe set is approached,
i.e., if Ṁδ ≤ −γαMδ, then a safe control input can be obtained without explicit knowledge of
Mδ or γh. This matches the general principle that for good performance observers should be
converge faster than controllers.

2.3.2.2 Approach 2

While in Approach 1 we used the stability guarantees of ISS observers to obtain safe con-
trollers, in Approach 2 we consider observers that only guarantee boundedness of the esti-
mation error. First, we define Bounded-Error Observers:

Definition 2.18. An observer (2.40a) is a Bounded-Error (BE) Observer, if there exists
a bounded set D(x̂0) ⊂ X and a (potentially) time-varying bounded set P(t, x̂) ⊂ X s.t.

x0 ∈ D(x̂0) =⇒ x(t) ∈ P(t, x̂) ∀t ∈ I. (2.54)

Figure 2.4 depicts the sets D and P . Note, ISS observers are a subset of BE observers,
using the definitions D(x̂0) = {x : ∥x− x̂0∥ ≤ δ} and P(t, x̂) = {x : ∥x− x̂(t)∥ ≤ Mδ(t)}.
BE observers are more general than ISS observers in the following ways: (A) The sets D and
P do not have to be norm-balls. For example, they could be zonotopes [12], intervals [85],
or sublevel sets of sum-of-squares polynomials [15]. (B) The shape and size of P is allowed
to change over time.

The idea is to find a common, safe input for all x ∈ P(t, x̂):

Theorem 2.9. For system (2.39), suppose the observer (2.40a) is a Bounded-Error observer.
Suppose the safe set S is defined by a continuously differentiable function h : X → R, where
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h is a Tunable Robust-CBF for the system. Suppose π : R≥0×X → U is an estimate-feedback
controller, piecewise-continuous in the first argument and Lipschitz continuous in the second,
s.t.

π(t, x̂) ∈
⋂

x∈P(t,x̂)

Ktrcbf (x), (2.55)

where Ktrcbf is defined in (2.45). Then the observer-controller renders the system safe from
the initial-condition sets x(0) ∈ X0 = D(x̂0) and x̂0 ∈ X̂0 = {x̂ : P(0, x̂0) ⊂ S}.

Proof. The total derivative of h for any x ∈ ∂S and π(t, x̂) ∈ Ktrcbf (x) satisfies

ḣ = Lfh(x) + Lgh(x)π(t, x̂) + Lgdh(x)w(t)

≥ Lfh(x) + Lgh(x)π(t, x̂)− κ(0) ∥Lgdh(x)∥ w̄

≥ −α(0) = 0

since h(x) = 0, κ(0) = 1, and x(t) ∈ P(t, x̂). Therefore, at any x ∈ ∂S, ḣ ≥ 0, i.e., the
system remains safe [31].

In general, designing a controller satisfying (2.55) can be difficult. We propose a method
under the following assumptions:

Assumption 2.1. There exists a known function a : R≥0 × X → R, piecewise continuous
in the first argument and Lipschitz continuous in the second, such that for all x̂ ∈ S,

a(t, x̂) ≤ inf
x∈P(t,x̂)

Lfh(x)− κ(h(x)) ∥Lgdh(x)∥ w̄ + α(h(x)).

By Assumption 1, a(t, x̂) lower-bounds the terms in ḣ independent of u. These bounds
can be obtained using Lipschitz constants. Similarly, we bound each term of Lgh:

Assumption 2.2. There exist known functions b−i , b
+
i : R≥0 × X → R for i = {1, ...,m},

piecewise continuous in the first argument and Lipschitz continuous in the second, such that9

b−i (t, x̂) ≤ [Lgh(x)]i ≤ b+i (t, x̂)

for all t ≥ 0, all x ∈ S and all x̂ ∈ {x̂ : x ∈ P(t, x̂)}. Furthermore, suppose sign(b−i (t, x̂)) =

sign(b+i (t, x̂)) at every t, x̂ ∈ S, and that h is of relative-degree 1, i.e., Lgh(x) ̸= 0.

9Recall, [Lgh(x)]i refers to the i-th element of Lgh(x).
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Intuitively, by assuming sign(b−i (t, x̂)) = sign(b+i (t, x̂)) it is clear whether a positive or
negative ui increases ḣ(x, u).10

Theorem 2.10. Consider a system (2.39) with U = Rm and suppose the observer (2.40a) is
a Bounded-Error observer. Suppose S is the safe set defined by an TRCBF h and Assump-
tions 2.1, 2.2 are satisfied. Suppose πdes : R≥0 × X → U is a desired controller, piecewise
continuous wrt t and Lipschitz continuous wrt x̂. Then the estimate-feedback controller
π : R≥0 ×X → Rm

π(t, x̂) = argmin
u∈Rm

∥u− πdes(t, x̂)∥2 (2.56a)

subject to a(t, x̂) +
m∑
i=1

min{b−i (t, x̂)ui, b+i (t, x̂)ui} ≥ 0 (2.56b)

is piecewise continuous wrt t, Lipschitz continuous wrt x, and renders the system safe from
the initial-condition sets x0 ∈ X0 = D(x̂0) and x̂0 ∈ X̂0 = {x̂ : P(0, x̂0) ⊂ S}.

Proof. First, we prove existence and uniqueness of solutions to the QP. In standard form,
the QP (2.56) is equivalent to

min
u∈Rm,k∈Rm

1

2
uTu− πT

desu (2.57a)

s.t.



b−1 ... 0 −1 ... 0

b+1 ... 0 −1 ... 0
... . . . ...

... . . . ...
0 ... b−m 0 ... −1

0 ... b+m 0 ... −1

0 ... 0 1 ... 1





u1
...
um

k1
...
km


≥



0

0
...
0

0

−a


(2.57b)

where the dependencies on (t, x̂) were omitted for brevity. Here k ∈ Rm is an auxiliary
variable encoding the constraint ki ≤ min{b−i ui, b+i ui} for all i = {1, ...,m}. This constraint
matrix has size (2m+1, 2m). However, since sign(b−i ) = sign(b+i ) by Assumption 2.2, only one
of either the (2i−1)-th or (2i)-th constraints can be active.11 Considering the sparsity pattern
of active constraint matrix, these constraints must be linearly independent. Therefore, the
proposed QP has 2m decision variables with at most m+1 linearly independent constraints,

10Future work will attempt to relax this assumption. In our limited experience, the estimation error can
be sufficiently small that the assumption holds.

11Note, if b−i = b+i ̸= 0, then both constraints are equivalent, and thus still means a single constraints is
active. Since Lgh(x) ̸= 0 (Assumption 2.2), b−i = b+i ̸= 0 for at least one of i = 1, ...,m.
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and thus a non-empty set of feasible solutions. Since the cost function is quadratic, there
exists a unique minimizer.

Second, we prove Lipschitz continuity. Since the active constraints matrix has linearly
independent rows, the regularity conditions in [75] are met. Thus the solution π(t, x̂) is
Lipschitz continuous wrt πdes(t, x̂), a(t, x̂), b−i (t, x̂) and b+i (t, x̂). Since these quantities are
piecewise continuous wrt t and Lipschitz continuous wrt x̂, the same is true for π(t, x̂).

Finally, we prove safety. Since (omitting t, x, x̂),

Lghu =
m∑
i=1

[Lgh]iui ≥
m∑
i=1

min{b−i ui, b+i ui},

satisfaction of the constraint in (2.56) implies satisfaction of (2.55). Therefore, by Theo-
rem 2.9, the system is rendered safe.

2.3.3 Simulations and Experiments

Code and videos are available here: https://github.com/dev10110/

robust-safe-observer-controllers

Simulation: Double Integrator

We simulate a double integrator system without disturbances, to demonstrate the importance
of the observer-controller interconnection. The system is (with U = R)

ẋ1 = x2, ẋ2 = u, y = x1, (2.58)

and the safe set is defined as S = {x : x1 ≤ xmax}. We use the CBF h(x) = −x2+α0(xmax−
x1). A Luenberger-observer, ˙̂x = Ax̂ + Bu + L(y − Cx̂), is used, where L = 1/2P−1CT

and P ∈ S2
++ is the solution the Lyapunov equation PA + ATP − CTC = −2θP for design

parameter θ > 0. This observer is ISS, since for any δ > 0, (2.47) is satisfied with Mδ(t) =√
λmax(P )/λmin(P )δe

−θt. This observer is also a Bounded Error observer since for any δ > 0,
(2.54) is satisfied with D(x̂0) = {x : ∥x0 − x̂0∥ ≤ δ} and P(t, x̂) = {x : (x− x̂)TP (x− x̂) ≤
λmax(P )δ

2e−2θt}.
We compare the methods proposed here to the CBF-QP of [21] (referred to as the Baseline-

QP), using x̂ in lieu of x. Plots of the resulting trajectory are depicted in Figure 2.7, demon-
strating safety violation. The trajectory plots under the controllers based on Approaches
1 and 2 are shown in Figure 2.5, demonstrating that safety is maintained in both cases.
In Approach 2, the function Lfh(x) is affine in x and Lgh(x) = −1 is independent of x,
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Figure 2.5: Simulation results for the Double Integrator (2.58), using (a) the baseline CBF
controller, (b) Approach 1 and (c) Approach 2. The same initial conditions and observer is
used for each simulation.

and therefore the function a(t, x̂) was determined using a box bound around P(t, x̂) and
b−i (t, x̂) = b+i (t, x̂) = −1. Numerically, we have noticed that for some initial conditions and
convergence rates, the controller of Approach 1 is less conservative than the controller of
Approach 2, and in other cases the converse is true. Identifying conditions that determine
whether Approach 1 or 2 is less conservative remains an open question.

Simulation: Planar Quadrotor

Consider 

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=



x4

x5

x6

0

−g
0


+



0 0

0 0

0 0

sinx3/m 0

cosx3/m 0

0 J−1


[
u1

u2

]
+



0

0

0

d1(t)

d2(t)

0


y =

[
x1, x2, x3

]T
+
[
v1(t), v2(t), v3(t)

]T
where [x1, x2]

T are the position coordinates of the quadrotor with respect to an inertial
coordinate frame, x3 is the pitch angle, [x4, x5]

T are the linear velocities in the inertial
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frame, and x6 is the rate of change of pitch. The quadrotor has mass m = 1.0 kg and
moment of inertia J = 0.25 kg/m2, and the acceleration due to the gravity is g = 9.81 m/s2.
The control inputs are thrust u1 and torque u2. The disturbances d : R≥0 → R2 captures
the effect of unmodeled aerodynamic forces on the system, bounded by ∥d∥ ≤ 2 m/s2. The
measurement disturbance is v : R≥0 → R3, bounded by 5 cm for position measurements, and
5◦ for pitch measurements.

The safety condition is to avoid collision with a circular obstacle at [x∗1, x
∗
2]

T of radius r,
i.e., S = {x : (x1 − x∗1)

2 + (x2 − x∗2)
2 − r2 ≥ 0}. The CBF proposed in [174] is used. The

desired control input is a LQR controller linearized about the hover state. The observer is
a DEKF adapted from [137]:12 Defining constant matrices D1 = gd(x) and D2 = cd(x), the
observer is

˙̂x = f(x̂) + g(x̂)u+ PCTR−1(y − c(x̂))

Ṗ = PAT + AP − PCTR−1CP +Q+ 2θP

V̇ = −2θV + 2
√
V
(∥∥DT

1 P
−1/2

∥∥ d̄+ ∥∥(LD2)
TP−1/2

∥∥ v̄)
where θ ≥ 0 is a design parameter, A = ∂

∂x̂
(f(x̂) + g(x̂)u), C = ∂c

∂x
(x̂). In the standard

form of EKFs [105, Sec 5.3], the disturbances are assumed to be Weiner processes and Q,R
represent the covariances of the d(t) and v(t). However in the Deterministic EKF, we assume
d(t), v(t) are bounded, and thus Q ∈ Sn

++, R ∈ Sny

++ can be freely chosen. Assuming there
exist positive constants p1, p2 such that p1I ≤ P (t) ≤ p2I ∀t ∈ I, (see [91, Sec 11.2]),
this observer is a Bounded-Error observer, and satisfies (2.54) with D(x̂0) = P(0, x̂0), and
P(t, x̂) = {x : (x− x̂)TP (t)−1(x− x̂) ≤ V (t)}.

The method in Approach 2 is used to synthesize the interconnected observer-controller.
Specifically, the functions a, b−i , and b+i were determined using Lipschitz bounds, and the
QP (2.56) is used to determine the control input.

Figure 2.6 compares the trajectory of the planar quadrotor using the controller proposed
in [174] (baseline case) to the proposed controller of Approach 2. In the baseline case, since
the state estimate is used in lieu of the true state, safety is violated. By accounting for the
state estimation uncertainty, the proposed controller avoids the obstacle.

12In [137], only the undisturbed case is demonstrated. The extension to include bounded disturbances can
be derived using the same techniques as in the original paper. The additional terms due to the disturbances
are bounded using [91, Eq. B4].
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Figure 2.6: Simulation Results for the Planar Quadrotor. The objective is to fly the quadro-
tor from the starting state to the target position while avoiding the circular obstacle region.
The blue lines indicate the path of the state estimate and grey lines the the projection of
P(t, x̂) on the x-y plane. The icons show the quadrotor’s true position every 0.2 s and is
colored red while violating safety. (a) uses the baseline CBF controller, and (b) uses Ap-
proach 2.

Experiments: 3D Quadrotor

For our experiments, we use the Crazyflie 2.0 quadrotor, using the on-board IMU and barom-
eter sensors and an external Vicon motion capture system. The objective was to fly in a
figure of eight trajectory, but to not crash into a physical barrier placed at x = 0.5 meters.
State was estimated using an EKF [123], assuming the true state lies within the 99.8% confi-
dence interval of the EKF. To design the controller, first πdes(t, x̂) is computed using an LQR
controller, which computes desired accelerations wrt to an inertial frame to track the desired
trajectory. This command is filtered using a safety critical QP, either the baseline CBF-QP
(Figure 2.7a) or the proposed QP using Approach 2 (2.56) (Figure 2.7c). Finally, the internal
algorithm of the Crazyflie (based on [116]) is used to map the output of the QP to motor
PWM signals. The magnitude of the disturbances was estimated by collecting experimental
data when the quadrotor was commanded to hover. The trajectories from the two flight
controllers are compared in Figure 2.7. In the baseline controller, the quadrotor slows down
as it approaches the barrier, but still crashes into barrier. In the proposed controller, the
quadrotor remains safe, Figure 2.7e.
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2.3.4 Conclusion

We have developed two methods to synthesize observer-controllers that are robust to bounded
disturbances on system dynamics and measurements, and maintain safety in the presence of
imperfect information. We have demonstrated the efficacy of these methods in simulation
and experiments. Future work will investigate methods to learn the disturbance, such that
the controller can adaptively tune itself to achieve better performance, and to extend the
work to handle probabilistic guarantees of safety when the system is subject to stochastic
disturbances instead of bounded disturbances.
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CHAPTER 3

Safety-Critical Planning

In the previous chapter we focused on the design of the controller as it pertains to safety-
critical design. In both ICCBFs and Observer-Robust CBFs, we saw the controller can filter
the inputs πdes, a desired control input, to ensure that a safe control signal is sent to the
robot’s actuators.

Although few constraints were placed on this signal πdes, seemingly the system can achieve
safety. Why then did we suggest in Chapter 1 that there was a flow of constraints from the
controller upstream towards the planner? In a nutshell, the problem is that finding a CBF is
a difficult task - it depends on the system dynamics and the safe set definition, and thus for
each new scenario one must attempt to find a CBF for their problem. Furthermore, when
there are multiple constraints as is often the case in practical robotic systems, many of the
results of CBFs become inapplicable.

We will propose two different methods to solve this problem. Both adopt the position
that to guarantee safety, some of the safety critical constraints must be satisfied at the
planning level instead of at the control level. This allows the autonomy stack to avoid
entering situations where it will eventually no longer be possible to act safely.

Both methods rely on different properties of the system. The first uses a property called
differential flatness, which allows one to find an equivalent linear system of a nonlinear
system. Then parts of the planning and control can take place in the lifted linear space, and
the results mapped back to the nonlinear space. Many practical robot systems (including all
Euler-Lagrange systems) posses the differential flatness property, but the algebra is somewhat
involved, and some constraints can be difficult to map from the nonlinear space to the linear
space. Nonetheless, we demonstrate through examples how the method can be used.

In the second method, we rely on the existence of backup controllers. This approach
is remarkably simple, and since almost all robotic systems have a failsafe method, this
approach can be widely applied. In fact, multiple members of our lab have adopted this as
the underlying principle that enables their more complicated algorithms and applications.
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3.1 Multirate Planner-Controllers using Differential

Flatness

Control of nonlinear systems for navigating a constrained environment is a common problem
in safety-critical robotics. Despite the extensive work on planning and control methods, the
real-time deployment of controllers that provide guarantees of safety poses challenges either
due to the computational complexity of nonlinear and nonconvex optimization, or due to
the curse of dimensionality in search based approaches [25].

Recently, multirate controllers have shown promising results for combining planning and
tracking [20, 66, 68, 74, 78, 93, 94, 142, 151, 168, 180, 181]. Safety can be guaranteed using
low-level filters that compute the closest safe control action to a desired command using
control barrier functions [20, 74, 168]. The tracking error and control policy can be computed
using Hamilton-Jacobi (HJ) reachability analysis [78] or sum-of-squares programming [151,
180]. Nonlinear tube MPC approaches have been developed to bridge high-level planning
with low-level control [66, 68, 93, 94, 142, 181]. However the nonlinearity in the MPC poses a
challenge in identifying suitable barrier functions in the tracking layer. In [61], a tube-based
planning approach with safety guarantees was developed. However since the size of the tube
increases over the planning horizon, the approach is conservative and cannot be used for in
recursive planning methods like MPC.

Many dynamical systems, including unicycles, quadrotors, inverted pendulums, and in-
duction motors, possess a useful property known as differential flatness (see [114, Ch. 7] for
a catalog of flat systems). Several studies have identified that such systems possess useful
properties for planning [62, 114, 116, 124, 168]. For instance in [116], quadrotor trajectories
from initial to target flat states are represented as polynomials whose coefficients are deter-
mined by solving a linear system. However, the method does not provide a principled way
of incorporating disturbances or safety constraints.

In this work, we propose a novel multirate controller that leverages properties of
differentially-flat systems. These properties allow a constructive means of designing both
the planner, a linear MPC, and the tracker, an Input-to-State Stable (ISS) feedback con-
troller. We provide formal guarantees of safety for the continuous-time (low-level) system,
and recursive feasibility for the MPC planner. We experimentally demonstrate our frame-
work on a ground rover and a quadrupedal robot that can be modeled as unicycles.
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Figure 3.1: Snapshots of a quadrupedal robot (left) and ground rover (right) navigating safely
from start to goal positions around two rectangular obstacles. The safe set (thick outside
line) and the tightened set (thin/dashed lines) are shown. The reference trajectory (red) is
solved online using Model Predictive Control, and must lie inside the tightened safe set. A
tracking controller ensures the maximum deviation from this reference trajectory is smaller
than the tightening. Thus the true path (green) remains within the safe set. Video: https:
//github.com/dev10110/Multirate-Controllers-for-Differentially-Flat-Systems.

3.1.1 Preliminaries

3.1.1.1 Differentially-Flat Systems

Consider a control-affine nonlinear system

ẋ = f(x) + g(x)u (3.1)

where x ∈ X ⊂ Rn is the state, and u ∈ Rm is the control input. The functions f :

X → Rn and g : X → Rn×m are smooth and satisfy f(0) = 0. Differential flatness of such
systems is often defined in terms of flat outputs (as in [116]) or using differential geometry
(e.g. [63, 114]). Following [102], here we define it in terms of endogenous dynamic feedback.1

Definition 3.1. The control system (3.1) is differentially flat over a domain M ⊂ X×Rq

if (I) there exists an endogenous dynamic feedback

ẏ = a(x, y, v) (3.2)

u = b(x, y, v), (3.3)

where y ∈ Rq is an additional state (referred to as the dynamic extension) and v ∈ Rm

is a different control input (referred to as the flat control input, and (II) there exists a
1This is possible since [102, Thm. 3] shows that a system is differentially flat if and only if it admits an

endogenous dynamic feedback. See [103, Sec 5.3.6] for an explanation of the term endogenous.
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diffeomorphism Ξ : M → N , where N ⊂ Rn × Rq is a domain,

ξ = Ξ(x, y), (3.4)

which maps the nonlinear states (x, y) to the flat state ξ ∈ Rn+q such that the dynamics of
ξ are linear, time-invariant

ξ̇ =
∂Ξ

∂x
ẋ+

∂Ξ

∂y
ẏ = Aξ +Bv, (3.5)

where A,B are constant matrices of appropriate size.

Remark 3.1. When a system is differentially flat, the flat system is linear, time-invariant,
and controllable [63].

Remark 3.2. If q = 0 (the dimension of y), the dynamic feedback is equivalent to a full-state
feedback, and thus full-state feedback linearizable systems are a subset of differentially-flat
systems (subject to smoothness requirements) [135].

Example 3.1 (Unicycle: Differential flatness). The unicycle is a differentially-flat system with
nonlinear dynamics

ẋ1 = u1 cosx3, ẋ2 = u2 sinx3, ẋ3 = u2,

where (x1, x2) is the position, x3 is the heading angle, and the control inputs are linear and
angular velocities, u1, u2. The dynamic extension is y = [ẋ1, ẋ2]

T , and flat state is ξ ∈ R4.
Then Ξ(x, y) = [x1, x2, y1, y2]

T . The flat system dynamics are

ξ̇1 = ξ3, ξ̇2 = ξ4, ξ̇3 = v1, ξ̇4 = v2,

where v ∈ R2 is the flat control input. The nonlinear state and control input can be
determined from ξ and v as

x1 = ξ1, x2 = ξ2, x3 = arctan (ξ4/ξ3),

u1 =
√
ξ23 + ξ24 , u2 =

−ξ4v1 + ξ3v2
ξ23 + ξ24

.

Notice that Ξ−1 has a singularity at ẋ1 = ẋ2 = 0, and thus is excluded from the domain M.
See Example 2 and [114, Sec. 2.5] on methods to handle singularities.
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3.1.1.2 Input-To-State Stability

Assume that a bounded additive disturbance2 w : R>0 → Rn, w ∈ Ln
∞ is introduced to the

system (3.1), and that a feedback controller π : X → Rm, π(0) = 0 has been designed. Then
the closed-loop system dynamics read:

ẋ = f(x) + g(x)π(x) + w(t), (3.6)

where ∥w(t)∥∞ ≜ supt≥0{|w(t)|} ≤ w̄ for some w̄ <∞.

Definition 3.2. A controller π : X → Rm, π(0) = 0 and system (3.6) are input-to-state
stabilizing and input-to-state stable, respectively, wrt. w, if there ∃β ∈ KL, ι ∈ K∞ s.t.

∥x(t, x0, w)∥ ≤ β(∥x0∥ , t) + ι(∥w∥∞) (3.7)

for all x0 ∈ X , w ∈ Ln
∞ and t ≥ 0.

Definition 3.3. A continuously differentiable positive definite function V : Rn → R>0 is an
input-to-state stabilizing control Lyapunov function (ISS-CLF) with respect to w,
if there exists functions α, ι ∈ K∞ such that ∀x ∈ X and w ∈ Ln

∞,

inf
u∈Rm

[
LfV (x) + LgV (x)u+

∂V

∂x
w

]
≤ −α(∥x∥) + ι(∥w∥∞). (3.8)

Definition 3.4. For the system (3.6), a set D ⊂ Rn is robustly control invariant, with
respect to disturbances w bounded by w̄, if there exists a feedback controller π(x) ∈ Rm such
that x(t0) ∈ D =⇒ x(t) ∈ D for all t ≥ t0 and for all w ∈ Lm

∞ where ∥w(t)∥∞ ≤ w̄.

3.1.2 Controller Construction

Our multirate controller consists of two stages: A high-level planner, in the form of a linear
MPC, and a low-level tracker, in the form a feedback controller. In designing the low-level
tracker, we define explicitly a set D, which is the set of possible tracking errors between
the reference and current state. In the high-level, we shrink the safe set by D and require
the MPC to generate reference trajectories that lie within the tightened safe set. As a
consequence, the system’s trajectory will lie in the safe set, despite the disturbances.

2ISS is typically defined for matched disturbances w = g(x)d [156]. In this paper, we consider the
unmatched case as necessitated by the coordinate transformations resulting from differential flatness.
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3.1.2.1 High-Level Planning

At the high-level, we solve a Finite Time Optimal Control Problem (FTOCP) every T sec-
onds. The prediction horizon is N steps, i.e., NT seconds. ξ(t) denotes the continuous-time
flat state at time t. zi|k denotes the predicted flat state at time t = iT , when the FTOCP
is solved at time t = kT . We minimise a cost function over the sequence of flat states
zk = [zk|k, zk+1|k, ..., zk+N |k] and flat control inputs vk = [vk|k, vk+1|k, ..., vk+N−1|k] subject to
(A) the given dynamics, (B) initial and final constraints and (C) safety constraints. The goal
state is ξg ∈ Rn+q, a flat state corresponding to a target state xg of the nonlinear system,
i.e., ξ(t) = ξg =⇒ x(t) = xg, where (x(t), y(t)) = Ξ−1(ξ(t)).

The FTOCP problem is the following optimization problem:

J∗(ξ(kT )) = min.
z,v

k+N−1∑
i=k

l(zi|k, vi|k) (3.9a)

s.t. zi+1|k = Adzi|k +Bdvi|k, (3.9b)

zk|k − ξ(kT ) ∈ D, (3.9c)

zk+N |k = ξg, (3.9d)

(zi|k, vi|k) ∈ H (3.9e)

∀i ∈ {k, ..., k +N − 1}.

Cost Function, (3.9a): l(ξ, v) is the stage cost of action v from a state ξ. We assume l is
convex in both arguments, is positive definite about (ξg, 0), and is radially unbounded.

Dynamics, (3.9b): Under a zero-order hold, (3.9b) is the exact discretisation of the flat
system (3.5) i.e., Ad = exp (AT ), Bd =

∫ T

0
exp (Aτ)Bdτ .

Initial Condition, (3.9c): The initial state zk|k, will be chosen by the FTOCP to be in
the neighborhood of the flat state:

(zk|k − ξ(kT )) ∈ D, (3.10)

where D is an ellipsoid, and will be defined later, in (3.23). Intuitively, D represents the
maximum tracking error between the reference state ξref(t), and the current state ξ(t).

Final Condition, (3.9d): The final state zk+N |k must be the goal state ξg, which is
assumed to be a safe unforced equilibrium point for the system, i.e., z = Adz.

Safety, (3.9e): Let S ⊂ Rn be the set of safe states for the nonlinear system (3.1). Then
the set of safe flat states is C ⊂ R(n+q), where C = {ξ ∈ N : x ∈ S, (x, y) = Ξ−1(ξ) ∈ M}.
Next, we define the set H such that a flat state-input pair chosen in H ensures that the
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intersample trajectory remains within a subset of C. Mathematically, H ⊂ Rn+q+m is s.t.:

(zi|k, vi|k) ∈ H ⇒ ξref(t) ∈ C ⊖ D,∀t ∈ [iT, (i+ 1)T ) (3.11)

where ξref(t) is the solution to ξ̇ref = Aξref + Bvi|k from the initial condition ξref(iT ) = zi|k.
While computing C and H could be challenging, in many physical systems the safe set can be
described in terms of the flat states. In these cases, constructing C can be straightforward.
To compute H, reachability-based methods for linear systems can be used, e.g., [172]. The
example below demonstrates an approach based on control barrier functions, e.g., [36, 152].

The final result , by solving the FTOCP (3.9), is a sequence of flat states zk and flat
control inputs vk. The reference trajectory and input for the continuous-time flat system
are defined for all t ∈ [0, NT ) using index i ≜ floor(t/T ) as

ξref(t) = eA(t−iT )zi|k +

(∫ t−iT

0

eAτdτ

)
Bvi|k, (3.12a)

vref(t) = vi|k, (3.12b)

Remark 3.3. The FTOCP problem is a convex problem. Constraint (3.9c) is a quadratic
constraint, and the rest are linear constraints. As such, it is a second order cone program
(SOCP), and can be solved efficiently using interior point methods or specialised solvers for
MPC problems [35, Ch. 4,11][17].

Example 3.2 (Unicycle: High Level Planner3). Here, we provide details on computing H.
Figure 3.1 shows the safe set S. Since the first two components of ξ and x are equal,
C = {ξ : [ξ1, ξ2] ∈ S}. Since the tracking error lies in an ellipsoid D, we shrink the safe set by
the diameter of D, and refer to this set as the tightened safe set. This region is partitioned
into 5 regions with overlapping boundaries, indicated by dashed rectangles. To find H, we
constrain the trajectory due to a state-input pair (zi|k, vi|k) to lie within a single rectangular
region for the next T seconds. To do this, four sampled control barrier functions [36] are
defined, one for each edge of the rectangle: each edge defines a half space of the form aT ξ ≤ b.
The barrier function is h(ξ) = aT ξ − b, such that the safe set with respect to this edge is
{ξ : h(ξ) ≤ 0}. A sufficient condition for h(ξ(t)) ≤ 0 for all t ∈ [(i+ k)T, (i+ k + 1)T ) is

h0 ≤ 0 and h0 + ḣ0T + 1/2max {0, ḧ0}T 2 ≤ 0,

where h0 = aT zi|k − b and ḣ0, ḧ0 are the first and second derivatives of h at zi|k, vi|k. This is

3The code for the FTOCP is at https://github.com/dev10110/
Multirate-Controllers-for-Differentially-Flat-Systems
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a linear constraint in both zi|k, vi|k, but requires integers to index the rectangles. Thus the
FTOCP is a Mixed-Integer SOCP, which is solved online.

With regards to singularities, our method guarantees safety at all states where Ξ is non-
singular, (i.e., in the domain M of Ξ). For the unicycle, since the singular points correspond
to states where the unicycle is at rest (see Example 1), these states are intrinsically safe. As
such, in our planning problem, we can specify stopping at a desired location as a suitable
target state. In general, independent analysis is needed to ensure the singular points are
intrinsically safe.

3.1.2.2 Low-Level Tracking

In this section, we construct a tracking controller. Consider a potentially time-varying,
bounded matched disturbance d ∈ Lm

∞, ∥d∥∞ ≤ d̄ <∞. The disturbed system is

ẋ = f(x) + g(x)u+ g(x)d(t). (3.13)

Transforming the disturbed system (3.13) to the flat space,

ξ̇ =
∂Ξ

∂x
ẋ+

∂Ξ

∂y
ẏ (3.14)

=
∂Ξ

∂x

(
f(x) + g(x)u+ g(x)d(t)

)
+
∂Ξ

∂y
ẏ

= Aξ +Bv +
∂Ξ

∂x
g(x)d(t), (3.15)

where A,B are as in (3.5), and Ξ is defined in (3.4). Let ξe ≜ ξ − ξref, ve ≜ v − vref and
w ≜ ∂Ξ

∂x
g(x)d(t). Then

ξ̇e = Aξe +Bve + w, (3.16)

Assume the disturbance w is bounded, ∥w∥∞ ≤ w̄. Define the tracking feedback controller
πe : Rn+q → Rm, and Lyapunov function

πe(ξe) = −1

2
R−1BPξe (3.17)

V (ξe) =
1

2
ξTe Pξe, (3.18)
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where P ∈ R(n+q)×(n+q) is a symmetric positive definite matrix satisfying a modified Riccati
equation

PA+ ATP − PBR−1BTP = −Q− PP/γ2, (3.19)

where Q ∈ R(n+q)×(n+q), R ∈ Rm×m are user-specified symmetric positive definite matrices.
The parameter γ > 0 must be chosen such that P exists. Since (A,B) is controllable, P
exists for a sufficiently large γ [97].

Lemma 3.1. The function V (3.18), is an ISS-CLF for the flat error system (3.16), wrt.
the bounded disturbance w, ∥w∥∞ ≤ w̄, under the feedback law (3.17), with α and ι defined
as

α(∥ξe∥) =
1

2
λmin(Q) ∥ξe∥2 , ι(w̄) =

1

2
γ2w̄2. (3.20)

Proof. The time derivative of V along the closed-loop trajectories of system (3.16) and
feedback law (3.17), is

d

dt
V =

1

2
ξTe

(
−Q− 1

γ2
PP

)
ξe + ξTe Pw

≤ −1

2
ξTe Qξe −

∥Pξe∥2

2γ2
+ ∥Pξe∥ ∥w∥ . (3.21)

Adding and subtracting 1
2
γ2 ∥w∥2 and factorizing yields

d

dt
V ≤ −1

2
ξTe Qξe −

1

2

(
∥Pξe∥
γ

− γ ∥w∥
)2

+
1

2
γ2 ∥w∥2 . (3.22)

Thus V is a ISS-CLF (3.8), with α, ι defined in (3.20).

Lemma 3.2. For the closed-loop flat error system (3.16), under the feedback law (3.17),
bounded disturbances w, ∥w∥∞ ≤ w̄, and V as in (3.18), the sub-level set

D = {ξe : V (ξe) ≤ Vmax}, (3.23)

is robustly control invariant, where

Vmax =
1

2
γ2
λmax(P )

λmin(Q)
w̄2. (3.24)
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Proof. Using V̇ ≤ −α(∥ξe∥) + ι(w̄), we have α(∥ξe∥) ≥ ι(w̄) =⇒ V̇ ≤ 0, and therefore

∥ξe∥2 ≥ γ2w̄2/λmin(Q) =⇒ V̇ ≤ 0. (3.25)

Similarly, since V (ξe) ≤ 1
2
λmax(P ) ∥ξe∥2, we have V (ξe) ≥ Vmax =⇒ (3.25) and thus V̇ ≤ 0,

completing the proof.

Example 3.3 (Unicycle: Low Level Tracking). For the unicycle, we have w̄ = d̄, since

w̄ ≜

∥∥∥∥∂Ξ∂xg(x)d(t)
∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥∥∥


1 0 0

0 1 0

0 0 0

0 0 0


cosx3 0

sinx3 0

0 1

 d(t)
∥∥∥∥∥∥∥∥∥∥
∞

= ∥d(t)∥∞ ≜ d̄.

The Riccati equation with Q = I4, R = I2, γ = 2, defines P in (3.19), the controller
in (3.17) and D in (3.23), with Vmax = 9.66w̄2.

3.1.3 Main Result

To summarise, the multirate controller is as follows. At the high-level, every T seconds, the
FTOCP (3.9) is solved. Using (3.12), the continuous-time reference trajectory ξref(t), vref(t)

is determined. At the low-level, the flat error state ξe, and the flat input v = vref + πe(ξe)

are computed using (3.17). Finally, the nonlinear control input is computed using (3.3),
u = b(x, y, v), where (x, y) = Ξ−1(ξ).

We make the following assumptions and prove two lemmas before presenting the main
result.

Assumption 3.1. The unmatched disturbances w in the flat system (3.16) are bounded,
∥w∥∞ ≤ w̄.

Assumption 3.2. The state of the system (nonlinear and flat state) is perfectly measured
at all times.

Assumption 3.3. At the initial time t0, (3.9) is feasible.4

Remark 3.4. In the case of compact safe sets S, as in many practical applications, Assump-
tion 3.1 can be verified, since ∂Ξ/∂x and g(x) can be bounded, for instance using Lipschitz
constants. See Example 3 for the closed form expression for w̄ for the unicycle system.

4Since FTOCP (3.9) is a convex program, the set of feasible initial conditions can be computed explic-
itly [34].
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Lemma 3.3. Consider a reference trajectory (ξref(t), vref(t)) defined over the interval t ∈
[t0, t1] that satisfies the flat dynamics (3.5). Under Assumption 3.1, if at t0, the flat error
ξ(t0)− ξref(t0) ∈ D, then the flat feedback control law

π(t, ξ) = vref(t) + πe(ξ(t)− ξref(t)), (3.26)

where πe, (3.17), ensures tracking error remains within D:

ξ(t)− ξref(t) ∈ D, ∀t ∈ [t0, t1]. (3.27)

Proof. The proof is immediate since D is a robust control invariant set for the flat error
system (Lemma 3.2).

Lemma 3.4. Under Assumptions 3.1-3.3, and if the flat system is controlled using the
tracking controller (3.26), the FTOCP (3.9), is recursively feasible.

Proof. Let the solution to (3.9) at the initial time t0 be z0,v0. We show that

z1 = [z1|0, z2|0, ..., zN−1|0, zN |0, ξg],

v1 = [v1|0, v2|0, ..., vN−1|0, 0],
(3.28)

is a feasible solution at the subsequent step t = t0 + T . Since zN |0 = ξg and Adξg =

ξg, it is immediate that z1,v1 satisfies dynamics (3.9b), final condition (3.9d) and safety
requirement (3.9e). Constraint (3.9c) remains to be shown. From the solution z0,v0, the
reference trajectory-input pair ξref(t), vref(t) for t ∈ [t0, t0 + NT ] is computed (3.12). Since
z0|0 = ξref(t0), ξ(t0)−ξref(t0) ∈ D. By Lemma 3.3, the low-level tracking controller guarantees
that at the next step

ξ(t0 + T )− z1|0 ∈ D, (3.29)

since ξref(t0 + T ) = z1|0. Thus, the initial constraint (3.9c) is also satisfied, completing the
proof.

Theorem 3.5 (Main Result). Consider the nonlinear system (3.13), subject to bounded,
matched disturbances d(t), ∥d∥∞ ≤ d̄. Under Assumptions 3.1- 3.3, the proposed con-
troller (3.9), (3.12), (3.26), (3.3) is recursively feasible. Furthermore, the closed-loop sys-
tem trajectories satisfy safety: x(t) ∈ S ∀t ≥ t0, and as k → ∞, x(kT ) ∈ {x :

∃y s.t. Ξ(x, y)− ξg ∈ D}, i.e., a neighborhood of xg is reached.

Proof. First, we prove the recursive feasibility of the FTOCP : Since the low-level controller
dictates u such that the conditions of Lemma 3.4 are met, recursive feasibility is maintained.
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Second, we prove safety is maintained : By definition of H (3.11), the FTOCP waypoints
z and control inputs v are such that the reference trajectory ξref(t) remains within the set
C ⊖ D. The low-level controller guarantees that the tracking error ξe remains in D, i.e.,
ξ(t) ∈ C for all t ≥ t0. Since ξ ∈ C =⇒ x ∈ S, the nonlinear state remains safe.

Finally, we prove convergence to goal state: Let J∗(ξ(kT )) be optimal cost at t = kT .
Cost associated with the feasible solution (3.28) is J̄(ξ((k+1)T )) = J∗(ξ(kT ))− l(z0|0, v0|0).
Therefore, optimal cost at t = (k + 1)T satisfies

J∗(ξ(kT )) ≥ J̄(ξ((k + 1)T )) = J∗(ξ(kT ))− l(z0|0, v0|0)

≥ J∗(ξ((k + 1)T )).

From the above equation and the positive definiteness of the stage cost l, the optimal cost
J∗(ξ(kT )) is a Lyapunov function for the closed loop system (3.9b), (3.12b). The result from
Lemma 3.2 implies that limk→∞ ξ(kT ) ∈ {ξg}⊕D. Together with the invertibility of Ξ, this
implies x(t) reaches the neighborhood of xg defined in the theorem.

Discussion. The proposed controller differs from other planner-tracker controllers since the
two levels are coupled through D, enabling formal guarantees on feasibility and safety. Fur-
thermore, the controller is constructive given the diffeomorphism Ξ and a few parameters.5

The controller also provides greater flexibility in choosing N, T : any FTOCP feasible for
some (N, T ) is also feasible for (2N, T/2).

3.1.4 Experimental Results

We demonstrate the claims above using simulations and experiments on a ground rover and
quadruped. The dynamical model and endogenous feedback of the unicycle model used,
the high-level planner, and the low-level controller used in the experiment are described in
Examples 1, 2, and 3 respectively.

Simulations. The objective is to drive a unicycle from the start to the goal location (Fig-
ure 3.2a,b). The system is subject to a matched disturbance, of magnitude ∼ 10% of the
control input magnitude. The reference trajectory always remains within the tightened safe
set. While the unicycle’s path can enter the margin between the safe set and the tightened
set, it always remains safe. The value of the Lyapunov function (3.18), remains below Vmax

at all times, as expected (Figure 3.2c).
Experiments. We show the real-time efficacy and robustness of our framework by imple-

menting it on an AION R1 UGV rover, and a Unitree A1 quadruped (Figure 3.3). For both,
5The only parameters the user needs to specify are N , T , l, Q, R, and γ. A line search over γ can be

used to minimise the size of D.
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Figure 3.2: Simulation results. (a) shows unicycle (green) and reference (red) trajectories.
The reference is discontinuous, since it is recomputed every T seconds. The start of each
replanned reference trajectory is marked (red crosses). Black square is magnified in (b). (c)
shows Lyapunov function against time, indicating that it remains below Vmax.

the MI-QCQP MPC was implemented with cvxpy and solved using Gurobi. For the rover,
we used N = 9, T = 1.0 seconds, and for the quadruped N = 30, T = 2.0 seconds. The
low-level controllers were implemented digitally, running at 300 and 20 Hz for the rover and
the quadruped respectively. Any error introduced by this sampling scheme is modeled as a
part of d, the matched-disturbance to the dynamics. Each iteration took between 0.05-0.2
seconds to replan. The communication and synchronization is done with ROS. The voltage
applied to the actuators are computed from the commanded velocities, by a PID for the rover,
and an Inverse Dynamics Quadratic Program (ID-QP) designed using concepts in [41] for
the quadruped. Our method enables safe navigation despite the presence of modelling error
arising due to inability of the robots’ actuators to exactly track the commanded velocities.
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Figure 3.3: Experimental Results. The quadruped (a) and the rover (b) navigate around
gray obstacles in the environment to reach target location. See Figure 3.1 for snapshots of
the robots performing the experiments.

3.1.5 Conclusions

This section details a constructive method to design a multirate controller for safety-critical
differentially-flat systems. The coupling between the MPC and continuous controllers al-
lows us to claim recursive feasibility of the MPC and safety of the nonlinear system. Our
theoretical claims were demonstrated in simulations and experiments. The effect of input
constraints will be addressed in future works. We anticipate that penalising the flat inputs
in the MPC cost function can improve input constraint satisfaction.

60



3.2 gatekeeper: A flexible framework for safe planning in

online and dynamic environments

In this section, we consider the case where the safe set is not known a priori, but is rather built
on-the-fly via the system outputs (sensor measurements). More specifically, we consider the
problem where a robot with limited sensing capabilities (hence limited information about
the environment) has to move while remaining safe under some mild assumptions on the
evolution of the environment, to be stated in detail below.

Navigating within a non-convex safe set is often tackled by path planning techniques [88,
98, 138, 169]. Typically a planner generates reference (or nominal) trajectories based on
a simplified (e.g., linearized or kinematic) model of the system. However, the reference
trajectories may not be trackable by the actual nonlinear system dynamics, and as a result
safety constraints may be violated. Furthermore, when trajectories are planned over finite
horizons, without recursive feasibility guarantees a planner may fail to find a trajectories,
leading to safety violations. This is particularly relevant and challenging when operating in
dynamic environments.

In this section, we propose a technique to bridge path planners (that can solve the noncon-
vex trajectory generation problem) and controllers (that have robust stability guarantees) in
a way that ensures safety. gatekeeper takes inspiration from [164] and [153], both of which
also employ the idea of a backup planner/controller. Conceptually, a backup controller is a
feedback controller that drives the system to a set of states that are safe (referred to as the
backup safe set), and keeps the system in this set. For example, for a quadrotor navigating
in an environment with static obstacles, a backup controller could be one that causes the
quadrotor to hover in place.

In gatekeeper, the idea is that given a nominal trajectory generated by the path planner
(potentially unsafe and/or not dynamically feasible) we construct a “committed trajectory"
using a backup controller. To do this, at each iteration of gatekeeper, we simulate a
controller that tracks the nominal trajectory upto some switching time, and executes the
backup controller thereafter. The trajectory with the largest switching time that is valid (as
defined in Def 3.13) becomes the committed trajectory. Thus, each committed trajectory is,
by construction, guaranteed to be defined, feasible, and safe for all future time. The controller
always tracks the last committed trajectory, thereby ensuring safety. This section’s key
contribution is the algorithm to construct such committed trajectories, and a proof that the
proposed approach ensures the closed-loop system remains safe. Furthermore, we explicitly
account for robustness against disturbances and state-estimation error since naive approaches
to robustification can lead to undesired deadlock. The overall algorithm is computationally
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efficient compared to similar methods, e.g. MPC. In our simulations 3.2.5, gatekeeper

was approximately 3-10 times faster than MPC. gatekeeper’s primary limitation is that
there must exist a backup controller and set. Some robotic systems and environments may
not admit these components. Our focus in this section is on systems where one can find
a suitable backup controller and set, and demonstrate how this can be employed to ensure
safety.

In summary, this work has the following contributions:

• A framework to bridge path planners with tracking controllers in order to convert nom-
inal/desired trajectories (generated by the path planner) into committed trajectories
that the tracking controller can track safely.

• A formal proof that the robotic system will remain safe for all future time under the
stated assumptions.

In particular, the new contributions with respect to [9] are:

• Theoretical: A robustification of the verification conditions in [9] to also account for
state estimation errors. We have also simplified the verification conditions.

• Experimental: A demonstration of the algorithm applied to quadrotors flying through
an unknown environment, constructing a map of the environment online, and filtering
human pilot commands to ensure collision avoidance.

A worked analytic example is provided in the appendix, to help illustrate the key concepts
of the section.

Organization

In section 3.2.1 we review a few of the leading paradigms for safety-critical path planning
and control. In section 3.2.2, we describe the key idea underpinning gatekeeper. In sec-
tions 3.2.3, 3.2.4 we formally define the problem and describe our proposed solution. Finally,
in section 3.2.5 simulations and experiments are used to demonstrate the method, and spe-
cific implementation details are discussed.

3.2.1 Related Work

A wide range of architectures and approaches have been proposed to tackle safety-critical
planning and control, especially when the environment is sensed online. A generic perception
planning and control stack is depicted in Fig. 3.4a.
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One approach is to encode the safety constraints in the path-planning module. In this
case, the world is represented using a grid-world, or through simplified geometric primitives
like obstacle points, or planes to depict the walls. From this representation, a path is
generated to avoid obstacles using, for instance, grid-search techniques [76] or sampling [88].
These paths can then be modified to avoid the obstacles, e.g. [107]. However since the path
was generated without considering the closed-loop behavior of the nonlinear dynamics of the
system and the controller, the robot may not execute the planned path exactly. Therefore,
safety may not be guaranteed.

A second approach is to encode the safety constraints at the controller. In recent years,
methods based on CBFs [20] have been developed to ensure that a system remains within a
specified safe set while tracking a desired control input. These methods however require the
safe set to be known apriori, represented by a scalar function h : X → R that is continuously
differentiable, and satisfies an invariance condition (see for e.g. Def. 2 of [20]). For certain
classes of systems and safe sets, constructive methods exist to design h, but these do not
handle time-varying or multiple safety conditions well [1, 8, 37, 53, 109]. For specific system
models, it is sometimes possible to construct suitable planners and controllers, e.g. [24,
46]. Alternatively, offline and computationally expensive methods based on Hamilton-Jacobi
reachability (e.g. [20, 24, 25, 48, 72, 162]) or learning-based (e.g. [55, 56, 99, 108, 154]) can
be used. However, when the environment is sensed online (and therefore the safe set is
constructed online), the assumptions of a CBF might be difficult to verify. If unverified,
these controllers could fail to maintain safety.

The third common approach is to encode safety constraints jointly between the controller
and the path planner. For example, MPC plans trajectories considering the dynamics of the
robotic system, and also determines a control input to track the trajectory. Various versions
of this basic concept exist, e.g. [136, 143, 164, 186]. However, given the nonlinearity of the
robot dynamics and the nonconvexity of the environment, guaranteeing convergence, stability
or recursive feasibility is challenging. To handle the interaction between path planners and
controllers, multirate controllers [8, 143] have also been proposed. These methods exploit the
differential flatness of the system to provide theoretical guarantees, although the resulting
mixed-integer problem can be expensive for clutter/complicated environments. In general,
these methods solve the path planning problem and the control problem separately, but
impose additional constraints on each to guarantee that the robot will remain safe. This
assumes a structure in the path planner and the controller, limiting the applicability.

There is also a growing literature on end-to-end learning based methods for safe percep-
tion, planning, and control. See for e.g., [49, 89] and references within. These methods can
perform well in scenarios that they have been trained on, but do not provide guarantees of
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Figure 3.4: Block Diagram describing the gatekeeper algorithm. (a) shows that gatekeeper
is an additional module that fits within the common perception-planning-control stack of a
robotic system. (b) is a pictorial representation of Algorithm 3.1.

performance or safety in scenarios beyond which they have been trained.
The idea of backup planners/controllers has been introduced recently to address some of

the above challenges. In [164], a backup trajectory is constructed using a linear model to
ensure the trajectory lies within the known safe set at all times. However, since the backup
trajectory was generated using simplified dynamics, the nonlinear system may not be able
to execute this trajectory, possibly causing safety violations. A similar approach is proposed
in [95] for mobile robots with the ability to stop. In [153], safety is guaranteed by blending
the nominal and backup control inputs. The mixing fraction is determined by numerically
forward propagating the backup controller. However, due to the mixing, the nominal tra-
jectory is never followed exactly, even when it is safe to do so. By combining elements from
these methods in a novel manner, gatekeeper addresses the respective limitations, without
requiring the path planner and controller to be co-designed.

3.2.2 Motivating Example and Method Overview

We present an example to illustrate the key concepts in this section, and challenges when
dealing with dynamic environments and limited sensing. A common wildfire fire-fighting
mission is the “firewatch" mission, where a helicopter is deployed to trace the fire-front,
the outer perimeter of the wildfire. The recorded GPS trace is then used to create a map

64



of the wildfire, which is then used to efficiently deploy appropriate resources. Today, the
helicopters used in the firewatch mission are human-piloted, but in this example, we design an
autonomous controller for a UAV to trace the fire-front without entering or being surrounded
by the fire. Fig. 3.5 depicts the notation used in this section.

The fire is constantly evolving, and expanding outwards. Thus the safe set, the set of states
located outside the fire, is a time-varying set denoted S(t). Since the rate of spread of fire is
different at each location, (it depends on various environmental factors like slope, vegetation
and wind [22, 144]), the evolution of the safe set S(t) is unknown. That said, it is often
possible to bound the evolution of S(t). In this example, we assume the maximum fire spread
rate is known. To operate in this dynamic environment, the UAV makes measurements, for
example thermal images that detect the fire-front. However, due to a limited field-of-view,
only a part of the safe set can be measured.

The challenge, therefore, is to design a controller for the nonlinear system that uses the
on-the-fly measurements to meet mission objectives, while ensuring the system state x(t)
remains within the safe set at all times, i.e.,

x(t) ∈ S(t), ∀t ≥ t0. (3.30)

Since S is unknown, verifying (3.30) directly is not possible. We ask a related question:
given the information available upto some time tk, does a candidate trajectory pcank (t) satisfy

pcank (t) ∈ Bk(t), ∀t ≥ tk, (3.31)

where Bk(t) is the perceived safe set for any time t ≥ tk constructed using the sensory
information available up to tk only. If we assume the perception system provides a reliable
estimate of a subset of the safe set, Bk(t) ⊂ S(t) ∀t ≥ tk, then any candidate trajectory
satisfying (3.31) will also satisfy pcank (t) ∈ S(t). However, since the check in (3.31) needs
to be performed over an infinite horizon t ≥ tk, it still cannot be implemented. A key
contribution of this section is to show how we can perform this check by verifying only a
finite horizon.

We propose the following: at each iteration, we construct a candidate trajectory and check
whether the candidate satisfies (3.31). If so, the candidate trajectory becomes a committed
trajectory. The controller always tracks the last committed trajectory, thus ensuring safety.
In other words, the candidate trajectory is valid if it is safe over a finite horizon and reaches
a backup set by the end of the horizon. The controller tracks the last valid trajectory (i.e.,
the committed trajectory), until a new valid trajectory is found.

Referring back to the firewatch mission, if the UAV is able to fly faster than the maximum
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spread rate of the fire, a safe course of action could be to simply fly perpendicular to the
firefront, i.e., radially from the fire faster than the maximum fire spread rate. This is an
example of a backup controller, since it encodes the idea that if the system state reaches a
backup set Ck(tkB) at some time tkB ≥ tk, then the backup controller πk

B will ensure that
x(t) ∈ Ck(t) for all t ≥ tkB. Note, the notation Ck(t) highlights that the backup set could be
a time-varying set. This switching time t = tk + Ts will be maximized by gatekeeper since
it is off-nominal behavior.

In the firewatch mission, πk
B is controller to make the UAV fly perpendicular to the

firefront, and Ck(t) is the set of states that are “sufficiently far from fire, with a suffi-
ciently high speed perpendicular to the fire." A worked example with exact expressions
for S(t),Bk(t), Ck(t) is provided in the appendix. Since the fire is constantly expanding, the
Ck(t) set is also time-varying: the set of safe states needs to be moving radially outwards.
Furthermore, at each k, the backup controller and set can be a different, so we index these
by k too.

Using backup controllers, we can find a sufficient condition for (3.31) that only requires
finite horizon trajectories: pcank (t) ∈ Bk(t) if t ∈ [tk, tkB)

pcank (tkB) ∈ Ck(tkB)
(3.32)

=⇒

pcank (t) ∈ S(t) if t ∈ [tk, tkB)

pcank (t) ∈ S(t) if t ∈ [tkB,∞)
(3.33)

⇐⇒ pcank (t) ∈ S(t) ∀t ≥ tk (3.34)

for any tkB ≥ tk, provided (I) Bk(t) ⊂ S(t), (II) Ck(t) ⊂ S(t) ∀t ≥ tkB, and (III) for t ≥ tkB

the control input to the candidate trajectory is πk
B. These conditions can be verified easily:

(I) is the assumption that the perception system correctly identifies a subset of the safe set,
(II) is the defining property of a backup set, and (III) will be true based on how we construct
the candidate trajectory.

Notice that in (3.32), we only need to verify the candidate trajectory over a finite interval
[tk, tkB], but this is sufficient to proving that the candidate is safe for all t ≥ tk.

In the following sections, we formalize the gatekeeper as a method to construct safe
trajectories that balance between satisfying mission objectives and ensuring safety.
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Figure 3.5: Notation used in this section. The nominal planner can plan trajectories into
unknown spaces, but gatekeeper ensures the committed trajectory lies within the estimated
safe sets, for all future time.

3.2.3 Problem Formulation

We consider two types of systems: (A) a nominal system, with perfect state information
and without disturbances, and (B) a perturbed estimate-feedback system, where there are
bounded disturbances on both the system dynamics and the measurements, and an observer
estimates the state.

3.2.3.1 Nominal System Description

Consider a nonlinear system,

ẋ = f(x, u) (3.35)

where x ∈ X ⊂ Rn is the state and u ∈ U ⊂ Rm is the control input. f : X × U → Rn is
assumed locally Lipschitz.

Given a control policy π : [t0,∞)× X → U and an initial condition x(t0) = x0 ∈ X , the
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Table 3.1: Notation

Symbol Definition

Time Points:
tk Start time of iteration k
tkS Switch time tkS = tk + TS
tkB Forecast time tkB = tkS + TB

Sets:
X ⊂ Rn State space
U ⊂ Rm Control input space
S(t) ⊂ X Safe set at time t
Bk(t) ⊂ X Perceived safe set at time t based on measurements upto time tk ≤ t
Ck(t) ⊂ X k-th controlled-invariant set

Controllers:
πT Trajectory tracking controller, πT : X × X → U
πB Backup controller, πB : R×X → U

Trajectories:
pnomk k-th nominal trajectory
pcank k-th candidate trajectory
pcomk k-th committed trajectory

initial-value problem describing the (nominal) closed-loop system is:

ẋ = f(x, π(t, x)), x(t0) = x0. (3.36)

When π is piecewise continuous in t and Lipschitz wrt x, there exists an interval over which
the solutions of (3.36) exist and are unique [92, Thm 3.1]. We assume this interval is [t0,∞).

3.2.3.2 Perturbed System Description

Now consider a perturbed system without perfect state information. The perturbed system
dynamics are

ẋ = f(x, u) + d(t), (3.37a)

y = c(x) + v(t), (3.37b)

where y ∈ Rp is the sensory output, and c : X → Rp is locally Lipschitz continuous. The
additive disturbances d : [t0,∞) → Rn and v : [t0,∞) → Rp are bounded, supt≥t0 ∥d(t)∥ =

d̄ <∞, supt≥t0 ∥v(t)∥ = v̄ <∞.
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An observer-controller uses a state estimate x̂ ∈ X to compute the control input, and
takes the form

˙̂x = q(x̂, y, u) (3.38a)

u = π(t, x̂) (3.38b)

where q : X × Rp × U → Rn is locally Lipschitz in all arguments. The estimate-feedback
controller π : R≥0 ×X → U is assumed piecewise-continuous in t and Lipschitz in x̂.

In this case, the closed-loop system dynamics are:

˙̂x = q(x̂, y, π(t, x̂)), x̂(t0) = x̂0, (3.39a)

ẋ = f(x, π(t, x̂)) + d(t), x(t0) = x0 (3.39b)

y = c(x) + v(t) (3.39c)

We assume that for each initial (x0, x̂0) and disturbance signals d, v, a unique solution exists
for all t ∈ [t0,∞).

3.2.3.3 Set Invariance

Our method is based on concepts in set invariance.

Definition 3.5 (Controlled-Invariant Set). For the nominal system (3.35), a controller π :

[t0,∞)×X → U renders a set C(t) ⊂ X controlled-invariant on t0 if, for the closed-loop
system (3.36) and any τ ≥ t0,

x(τ) ∈ C(τ) =⇒ x(t) ∈ C(t), ∀t ≥ τ. (3.40)

The concept of controlled invariance can be extended to the case with disturbances and
an observer-controller [5].

Definition 3.6 (Robustly Controlled-Invariant Set). For the perturbed system (3.37), an
observer-controller (3.38) renders a set C(t) ⊂ X robustly controlled-invariant on t0

if, for the closed-loop system (3.39) and any bounded disturbance d, v with supt≥t0 ∥d(t)∥ ≤ d̄,
supt≥t0 ∥v(t)∥ ≤ v̄, for any τ ≥ t0,

x(τ) ∈ C(τ), ∥x̂(τ)− x(τ)∥ ≤ δ =⇒ x(t) ∈ C(t), ∀t ≥ τ. (3.41)

for some δ > 0.
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Usually, the objective is to the find the largest controlled-invariant set C(t) for a given
safe set S(t), referred to as the viability kernel [31, 48, 74]. However, these methods are
difficult to apply when the safe set S(t) is unknown apriori, and instead is estimated online.
The objective and approach of this section is different, as described below.

3.2.3.4 Assumptions

Here, we formally state the assumptions that will be used to prove that gatekeeper renders
a system safe. We assume the following modules are available, and explain the technical
assumptions of each in the following paragraphs.

1. a perception system that can sense the environment, and can estimate the safe set,

2. a nominal planner that generates desired trajectories to satisfy mission requirements
(for example reaching a goal state, or exploring a region), potentially using simplified
dynamic models,

3. an input-to-state stable tracking observer-controller that can robustly track a specified
trajectory,

4. a backup control policy that can stabilize the system to a control invariant set.

More specifically:

Perception System

The (potentially time-varying) safe set is denoted S(t) ⊂ X . We assume S(t) always has a
non-empty interior. Although the full safe set may not be known at any given time, using
sensors and a model of the environment, there are scenarios in which it is possible to con-
struct reasonable bounds on the evolution of the safe set. For example, in the firefighting
scenario, an upper-bound on the fire’s spread rate could be known. Similarly, in an envi-
ronment with dynamic obstacles, we assume that a reasonable upper-bound on the velocity
or acceleration of the dynamic obstacles is known. As such, although we address safety in
unknown environment, we still require some assumptions on the behavior of the environment
to guarantee safety.

Specifically, we assume that the perception system provides estimates of the safe set that
are updated as new information is acquired by the sensors. The information is available at
discrete times tk, k ∈ N. Let Bk(t) denote the perceived safe set for time t ≥ tk constructed
using sensory information upto time tk. We assume the following:

70



Assumption 3.4. The safe set S(t) ⊂ X has a non-empty interior for each t, and the
estimated safe set Bk(t) satisfies

Bk(t) ⊂ S(t) ∀k ∈ N, t ≥ tk, (3.42a)

Bk(t) ⊂ Bk+1(t) ∀k ∈ N, t ≥ tk+1. (3.42b)

This reads as follows. In (3.42a), we assume that any state perceived to be safe is indeed
safe. In (3.42b), we assume that the predictions are conservative, i.e., new information
acquired at tk+1 does not reclassify a state x ∈ Bk(t) (i.e. a state perceived to be safe based
on information time tk) as an unsafe state x /∈ Bk+1(t) based on information received at tk+1.

This assumption (while stated more generally) is common in the literature on path plan-
ning in dynamic/unknown environments [163, 186]. Depending on the application, vari-
ous methods can be used to computationally represent such sets, including SDFs [128] or
SFCs [107]. If there are perception or predictions uncertainties, we assume they have already
been accounted for when constructing Bk(t). Some methods to handle such errors are studied
in [3] and references therein.

Note, Assumption 3.4 does not require that if a state x is classified as safe at some time
tk, that x is safe for all time. Mathematically, we do not assume x ∈ Bk(t) =⇒ x ∈
Bk(τ) ∀τ ≥ t. In the appendix, diagrams and a worked example with the firefighting mission
is provided to help clarify Assumption 3.4 and the definitions of S(t),Bk(t).

Nominal Planner

We assume that a nominal planner enforces the mission requirements by specifying the
desired state of the robot for a short horizon TH into the future.

Definition 3.7 (Trajectory). A trajectory p with horizon TH is a piecewise continuous
function p : T → X defined on T = [tk, tk + TH ] ⊂ R. A trajectory p is dynamically
feasible wrt (3.35) if there exists a piecewise continuous control u : T → U s.t.

p(t) = p(tk) +

∫ t

tk

f(p(τ), u(τ))dτ, ∀t ∈ T . (3.43)

Denote the nominal trajectory available at the k-th iteration by the function pnomk :

[tk, tk + TH ] → X . We do not require pnomk to be dynamically feasible wrt (3.35) or (3.37).
Note, although some path planners (e.g. A*, RRT*) construct geometric paths, we assume

the output of the path planner is a trajectory, i.e., is parameterized by time. Methods for
time allocation of geometric paths is a well studied problem, see for e.g. [107, 138, 164].

To summarize, we assume a nominal planner is available:
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Assumption 3.5. There exists a nominal planner that can generate finite-horizon trajecto-
ries pnomk : [tk, tk + TH ] → X for each k ∈ N.

Tracking Observer-Controller

We assume an estimate-feedback controller πT : X × X → U that computes a control input
u = πT (x̂, p(t)) to track a given trajectory p; we refer to this policy as the tracking observer-
controller [87, 100, 114]. We assume that the tracking controller is input-to-state stable [5]:

Definition 3.8 (Input-to-State Stable Observer-Controller). Let T = [tk, tl] ⊂ R≥0. A
tracking observer-controller

u(t) = πT (x̂, p(t)) (3.44a)
˙̂x = q(x̂, y, u) (3.44b)

is input-to-state stable for the system (3.35), if, for any bounded disturbances d : T → Rn,
v : T → R, and any dynamically feasible trajectory p : T → X , the following holds:

∥x(tk)− x̂(tk)∥ ≤ δ, and p(tk) = x̂(tk) =⇒

∥x(t)− x̂(t)∥ ≤ β(δ, t− tk) + γ(w̄), and

∥x̂(t)− p(t)∥ ≤ β(δ, t− tk) + γ(w̄), and

∥x(t)− p(t)∥ ≤ β(δ, t− tk) + γ(w̄), ∀t ∈ T , (3.45)

where β : R≥0 × R≥0 → R≥0 is class KL, γ : R≥0 → R≥0 is class K, and w̄ =

max(supt∈T ∥d(t)∥, supt∈T ∥v(t)∥).

Note, for simplicity we assumed the same β, γ for each of the three norms in (3.45),
although it is not strictly necessary.

To summarize, we assume a tracking controller is known:

Assumption 3.6. There exists an input-to-state stable observer-controller of the form in
Def. 3.8, with known functions β, γ.

Backup Controller

In the case when a safe set S can not be rendered controlled invariant for given system
dynamics, the objective reduces to finding a set C ⊂ S, and a controller π : C → U that
renders C controlled invariant. For example, by linearizing (3.35) around a stabilizable
equilibrium xe, an LQR controller renders a (sufficiently small) set of states around xe
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forward invariant [92, Thm. 4.13, 4.18]. This observation leads to the notion of backup
safety [47, 153].

Definition 3.9 (Backup Controller). A controller πk
B : T ×X → U is a backup controller

to a set Ck(t) ⊂ X defined for t ∈ T = [tk,∞) if, for the closed-loop system

ẋ = f(x, πk
B(t, x)), (3.46)

(A) there exists a neighborhood Nk(t) ⊂ X of Ck(t), s.t. Ck(t) is reachable in fixed time TB:

x(τ) ∈ Nk(τ) =⇒ x(τ + TB) ∈ C(τ + TB), (3.47)

and (B) πk
B renders Ck(t) controlled-invariant:

x(τ + TB) ∈ C(τ + TB) =⇒ x(t) ∈ C(t) ∀t ≥ τ + TB. (3.48)

Remark 3.5. The neighborhood Nk does not need to be known in the gatekeeper framework.
The definition ensures that there exist states outside Ck that can be driven into Ck by the
backup controller within a fixed time TB. This excludes cases, for example, where the backup
trajectories approach Ck asymptotically but never actually enter Ck.

To summarize, we assume a backup controller is known:

Assumption 3.7. At the k-th iteration, a set Ck(t) and a backup controller πk
B : [tk,∞) ×

X → U to Ck(t) can be found where

Ck(t) ⊂ S(t), ∀t ≥ tk. (3.49)

Remark 3.6. Note that while we assume Ck(t) ⊂ S(t), we do not assume the trajectory to
reach Ck(t) is safe, nor that the set Ck(t) is reachable from the current state x(tk) within a
finite horizon. This is in contrast to backward reachability based methods [1, 73, 109, 162].
Instead, we will ensure both of these conditions are satisfied through our algorithm.

Remark 3.7. The design of backup controllers and sets depends on the robotic system and the
environment model. For some systems, the backup set can be designed by linearization about
a stabilizable equilibrium point (or limit cycle), and determining the region of attraction.
Other methods include reachability analysis or learning-based approaches, e.g. [25, 55, 56,
99, 108, 154]. Generic methods to design the backup controllers are beyond the scope of this
section, but specific methods are discussed in Section 3.2.5 and in [47, 153].
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3.2.3.5 Problem Statement

In summary, the problem statement is

Problem 3.1. Consider system (3.37) satisfying Assumptions 3.4-3.7, i.e., a system with
a perception system satisfying Assumption 3.4, a nominal planner that generates desired
trajectories, an input-to-state stable tracking controller satisfying Definition 3.8, and a backup
controller satisfying Assumption 3.7. Design an algorithm to track desired trajectories while
ensuring safety, i.e., x(t) ∈ S(t) for all t ≥ t0.

3.2.4 Proposed Solution

gatekeeper is a module that lies between the planning and control modules. It considers
the nominal trajectories by the planner, modifies them as needed to what we call committed
trajectories, and inputs these committed trajectories to the trajectory-tracking controller.
In this section, we will demonstrate how to construct these committed trajectories. To aid
the reader, the analysis is first presented for the nominal case, and later extended to the
perturbed case. The various trajectories and times are depicted in Fig. 3.5. The algorithm
is described in Algorithm 3.1 and depicted in Fig. 3.4.

3.2.4.1 Nominal Case

At the k-th iteration, k ∈ N \ {0}, let the previously committed trajectory be pcomk−1.
gatekeeper constructs a candidate trajectory pcan,TS

k by forward propagating a controller
that tracks pnomk over an interval [tk, tk + TS), and executes the backup controller for
t ≥ tk + TS. TS ∈ R≥0 is a switching duration maximized by gatekeeper as described
later. Formally,

Definition 3.10 (Candidate Trajectory). Suppose at t = tk,

• the state is x(tk) = xk,

• the nominal trajectory is pnomk : [tk, tk + TH ] → X ,

• πT is a trajectory tracking controller,

• πk
B is a backup controller to the set Ck(t).
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Given a TS ∈ [0, TH ], the candidate trajectory pcan,TS

k : [tk,∞) → X is the solution to the
initial value problem

ṗ = f(p, u(t)), (3.50a)

p(tk) = xk, (3.50b)

u(t) =

πT (p(t), pnomk (t)) t ∈ [tk, tk + TS)

πk
B(t, p(t)) t ≥ tk + TS.

(3.50c)

By construction, the candidate is dynamically feasible wrt (3.35). A candidate trajectory
is valid if the following hold:

Definition 3.11 (Valid). A candidate trajectory pcan,Ts

k : [tk,∞) → X defined by (3.50) is
valid if the trajectory is safe wrt the estimated safe set over a finite interval:

pcan,TS

k (t) ∈ Bk(t), ∀t ∈ [tk, tk,B], (3.51)

and the trajectory reaches Ck(t) at the end of the horizon:

pcan,TS

k (tk,B) ∈ Ck(tk,B), (3.52)

where tk,B = tk + TS + TB.

Notice checking whether a candidate is valid only requires the solution pcan,TS

k over the
finite interval [tk, tk + TS + TB]. This means that the candidate can be constructed by
numerical forward integration over a finite horizon.

Def. 3.12 defines how the k-th committed trajectory is constructed using the nominal
trajectory pnomk , the backup controller πB

k , and the previous committed trajectory pcomk−1.

Definition 3.12 (Committed Trajectory). At the k-th iteration, define

Ik =
{
TS ∈ [0, TH ] : p

can,TS

k is valid
}
⊂ R, (3.53)

where pcan,TS

k : [tk,∞) → X is as defined in (3.50), and Def. 3.11 is used to check validity.
The committed trajectory is pcomk : [tk,∞) → X , defined as follows:

If Ik ̸= ∅, let T ∗
S = max Ik. The committed trajectory is

pcomk (t) = p
can,T ∗

S
k (t), t ∈ [tk,∞). (3.54)
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If Ik = ∅, the committed trajectory is

pcomk (t) = pcomk−1(t), t ∈ [tk,∞). (3.55)

We are ready to prove the proposed strategy guarantees safety. First, we show that each
committed trajectory is safe.

Theorem 3.6. Suppose Assumptions 3.4-3.7 hold. Suppose pcan,TS
0 : [t0,∞) → X is a

candidate trajectory that is dynamically feasible wrt (3.35) and valid according to Def. 3.11
for some TS ≥ 0. If, for every k ∈ N, pcomk : [tk,∞) → X is determined using Def. 3.12,
then for all k ∈ N,

pcomk (t) ∈ S(t), ∀t ∈ [tk,∞). (3.56)

Proof. The proof is by induction.
Base Case: k = 0. Since pcan0 is a valid trajectory, it is committed, i.e., pcom0 = pcan,TS

0 .
Then,

pcom0 (t) ∈

B0(t) for t ∈ [t0, t0,B)

C0(t) for t = t0,B

=⇒ pcom0 (t) ∈

S(t) for t ∈ [t0, t0,B)

S(t) for t ≥ t0,B

⇐⇒ pcom0 (t) ∈ S(t) for t ≥ t0

where t0,B = t0 + TS + TB.
Induction Step: Suppose the claim is true for some k ∈ N. We will show the claim is also

true for k + 1. There are two possible definitions for pcomk :
Case 1: When Ik+1 ̸= ∅, pcan,T

∗
S

k+1 is a valid candidate, i.e.,

pcomk+1(t) = p
can,T ∗

S
k+1 (t) ∀t ≥ t0

∈

Bk+1(t) for t ∈ [tk+1, tk+1,SB)

Ck+1(t) for t ≥ tk+1,SB

∈ S(t) for t ≥ tk+1

76



Case 2: If Ik+1 = ∅, the committed trajectory is unchanged,

pcomk+1(t) = pcomk (t) ∈ S(t), ∀t ≥ tk+1.

The following shows that gatekeeper ensures safety.

Theorem 3.7. Under the assumptions of Theorem 3.6, if x(t0) = pcom0 (t0), and for each
k ∈ N the control input to the nominal system (3.35) is

u(t) = πk
T (x(t), p

com
k (t)),∀t ∈ [tk, tk+1), (3.57)

then the closed-loop dynamics (3.36) will satisfy

x(t) ∈ S(t),∀t ≥ t0. (3.58)

Proof. We prove this by showing that ∀k ∈ N, x(t) = pcomk (t) for t ∈ [tk, tk+1). Again, we
use induction.

Base Case: For the nominal system (3.35), when x(t0) = pcom0 (t0) and the tracking
controller is ISS (3.45),

∥x(t)− pcom0 (t)∥ ≤ β(0, t− t0) + γ(0) = 0

∴ x(t) = pcom0 (t) ∀t ∈ [t0, t1)

Induction Step: Suppose for some k ∈ N, x(t) = pcomk (t) for t ∈ [tk, tk+1). There are two
cases for pcomk+1:

Case 1: a new candidate is committed, ∴ pcan,TS

k+1 (tk+1) = x(tk+1). Since the tracking
controller is input-to-state stable, this implies x(t) = pcomk+1(t) for t ∈ [tk+1, tk+2).

Case 2: A new candidate is not committed, ∴ pcomk+1(t) = pcomk (t) ∀t ∈ [tk+1, tk+2). Since
x(tk+1) = pcomk (tk+1), the tracking controller ensures x(t) = pcomk+1(t) ∀t ∈ [tk+1, tk+2).

Therefore, x(t) = pcomk (t) ∈ S(t) ∀t ∈ [tk, tk+1), for each k ∈ N. Thus, x(t) ∈ S(t) for all
t ≥ t0.

Remark 3.8. The controller in (3.57) uses the backup controller πB: the committed trajec-
tory pcomk is constructed such that for all t ≥ tk,SB the trajectory uses the backup controller
(see (3.50)). Therefore, if after the k-th step new candidate trajectories are not committed,
the controller (3.57) applies the backup controller for time t ≥ tk,SB.
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Figure 3.6: Diagram depicting the challenge due to disturbances. (a) Green line shows the
committed trajectory at iteration k, and the shaded region is the tube that contains the
system trajectory. If the validation step only checks that the green tube lies within the safe
set, a new candidate trajectory (red) cannot be committed, since the candidate tube (red
shaded region) intersects with the unsafe set. (b) shows the proposed approach, where safety
is checked wrt the yellow set, i.e., a tube of radius R along the trajectory and a ball of radius
R + r at the end. This allows for sufficient margin to commit a new trajectory at the next
iteration.

Remark 3.9. In [47, 153], numerical forward propagation of the trajectory with a backup
controller is also used to construct a safety filter. However, the resulting control input
mixes the nominal control input with the backup control input at all times. In contrast,
in gatekeeper we use a switching time to switch between implementing the nominal con-
trol input and the backup control input. This is desirable since it leads to less conservative
controllers, as highlighted in section 3.2.5.1.

3.2.4.2 Perturbed Case

We now address the case with non-zero disturbances and state-estimation error.6 The algo-
rithm is identical to that presented above, except that the validation step will be redefined.

First, we highlight the problem that disturbances introduce. Consider the specific scenario
visualized in Fig. 3.6. To account for the disturbances, we validate safety of a tube around
the candidate trajectory: using the ISS bound (3.45), a tube of decreasing radius around the
committed trajectory will always contain the true state of the system. Therefore, if instead
of (3.51), we checked that the corresponding tube containing the candidate trajectory lies
within the safe set (green tube in Fig. 3.6a), then indeed, the system will remain safe.

6Compared to the conference version [9], here we consider the additional uncertainty due to state esti-
mation errors, and simplify the validation check.
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However, when a new candidate is proposed at the next iteration, the new tube (red
tube) intersects with the unsafe set. Thus, the new candidate cannot be committed, and an
undesired deadlock is reached: x(t) ∈ Ck(t) for all t ≥ tk,B.

To avoid this behavior, we propose a different validity check. First, we check that a tube
of radius R is safe over the finite horizon, and second, we ensure Ck is a (larger) distance
R + r away from the unsafe set, where r, R are defined below. In Fig. 3.6a, this is depicted
by the yellow sets. Note, the additional +r term is used to avoid the described deadlock
behaviour, and is not needed to guarantee safety.

Recall Def. 3.8 defines the controller’s tracking error bounds. The validity check in
Def. 3.11 is replaced by the following:

Definition 3.13 (Robustly Valid). Consider the dynamical system (3.37), with bounded
disturbances supt≥tk

∥d(t)∥ ≤ d̄, and supt≥tk
∥v(t)∥ ≤ v̄. Let w̄ = max(d̄, v̄). Suppose

∥x(tk)− x̂(tk)∥ ≤ r for some k ∈ N. Let R = β(r, 0) + γ(w̄).
A candidate trajectory pcan,Ts

k : [tk,∞) → X defined by (3.50) is robustly valid if

• the candidate trajectory coincides with the state estimate at the initial time:

x̂(tk) = pcan,Ts

k (tk), (3.59)

• the candidate trajectory is robustly safe over a finite interval:

pcan,TS

k (t) ∈ Bk(t)⊖ B(R) ∀t ∈ [tk, tk,B], (3.60)

• at the end of the interval, it reaches Ck(t):

pcan,TS

k (tk,SB) ∈ Ck(tk,B), (3.61)

• and the set Ck(t) is (R + r) away from the unsafe set:

Ck(t) ⊂ S(t)⊖ B(R + r) ∀t ≥ tk. (3.62)

If a candidate trajectory is robustly valid, it can be committed. The following theorem
proves that gatekeeper can render the perturbed system (3.37) safe.

Theorem 3.8. Suppose Assumptions 3.4-3.7 hold. Suppose pcom0 : [t0,∞) → X is a com-
mitted trajectory that is robustly valid by Def. 3.13 for some r > 0, TS ≥ 0. Suppose
∥x(t0)− x̂(t0)∥ ≤ r, and pcom0 (t0) = x̂(t0).
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If, for every k ∈ N\{0}, pcomk : [tk,∞) → X is determined using Def. 3.12 (except that
validity is checked using Def. 3.13), and the control input to the perturbed system (3.37) is

u(t) = πk
T (x̂(t), p

com
k (t)) ∀t ∈ [tk, tk+1]

then the closed-loop system (3.39) will satisfy

x(t) ∈ S(t), ∀t ≥ t0. (3.63)

Proof. As in Thm. 3.6, we have that for any k ∈ N,

pcomk (t) ∈ S(t) ∀t ∈ [tk,∞). (3.64)

We aim to prove the analog of Thm 3.7, i.e., that for any k ∈ N, tracking the committed
trajectory pcomk (tk) for t ≥ tk is safe. This is proved below.

Since pcomk is robustly valid, pcomk (tk) = x̂(tk). Therefore,

∥x(tk)− pcomk (tk)∥ = ∥x(tk)− x̂(tk)∥ ≤ r.

Using (3.45), this implies that for all t ≥ tk,

∥x(t)− pcomk (t)∥ ≤ β(r, t− tk) + η(w̄)

≤ β(r, 0) + η(w̄) = R

∴ ∥x(t)− pcomk (t)∥ ≤ R

and so by (3.60),

pcomk (t) ∈ Bk(t)⊖ B(R) ∀t ∈ [tk, tk,SB]

=⇒ {pcomk (t)} ⊕ B(R) ⊂ Bk(t) ∀t ∈ [tk, tk,SB]

=⇒ x(t) ∈ Bk(t) ∀t ∈ [tk, tk,SB].

Furthermore, since for all t ≥ tk+TS the committed trajectory is generated by the backup
controller, and pcomk (tk,B) ∈ Ck(tk,B), we have pcomk (t) ∈ Ck(t),∀t ≥ tk,B. Therefore,

x(t) ∈ Ck(t)⊕ B(R) ∀t ≥ tk,B.
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Putting these together,

x(t) ∈

Bk(t) for t ∈ [tk, tk,B]

Ck(t)⊕ B(R) for t ≥ tk,B

=⇒ x(t) ∈

Sk(t) for t ∈ [tk, tk,B)

Sk(t) for t ≥ tk,B

⇐⇒ x(t) ∈ S(t) ∀t ≥ tk.

This proves that for any k ∈ N, if pcomk is the committed trajectory, the system will remain
safe while it is tracking pcomk . When a new candidate trajectory that is robustly valid (by
Def. 3.13) is found, the committed trajectory can be updated, and the system will continue
to remain safe.

Remark 3.10. The theorem provides certain parameters of the nominal planner. For in-
stance, requiring trajectories to lie in B(tk) ⊖ B(R) corresponds to the common practice of
inflating the unsafe sets by a radius R. The theorem shows that any R ≥ β(r, 0) + γ(w̄) is
sufficient.

Remark 3.11. In (3.62), we checked that Ck(t) is at least (R + r) away from the boundary
of S(t) at all t ≥ tk, even though the proof of safety only requires a margin R. The reason
we check for (R + r) is to prevent the deadlock scenario discussed before: under the stated
assumptions, for t ≥ tk, ∥x(t)− x̂(t)∥ ≤ β(t − tk) + γ(w̄). Therefore, if r ≥ γ(w̄) there
exists some time τ = tk + T where r = β(T, r) + γ(w̄) since class KL functions are strictly
decreasing wrt t. Thus, for t ≥ τ , pcomk (t) ∈ Ck(t). Thus,

x(t), x̂(t) ∈ Ck(τ)⊕ B(r)

and ∥x(t)− x̂(t)∥ ≤ r. Thus, when validating the new candidate trajectory pcan,Ts

k′ they will
start at least R away from the boundary, i.e., there is sufficient margin for new trajectories
to be committed.

Remark 3.12. In constructing candidate trajectories, we require the initial state of the
candidate trajectory to coincide with the state estimate, (3.59). If this is not the case, an
additional margin would be necessary in (3.62) to account for this error.

Remark 3.13. The construction of committed trajectories is summarized in pseudo-code in
Alg. 3.1. max I can be determined efficiently, since it is an optimization of a scalar variable
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over a bounded interval. We used a simple grid search with N points. Therefore, upto
N initial value problems need to be solved, which can be done very efficiently using modern
solvers [134]. Using N = 10, the median computation time was only 3.4 ms. Other strategies
including log-spacing or optimization techniques could be investigated in the future.

Algorithm 3.1: gatekeeper
1 Parameters: N > 0 ∈ N
// Do a grid search backwards over the interval [0, TH ]:

2 for i in range(0, N): do
3 Using Bk(t), identify Ck(t) satisfying assum. 3.7.
4 TS = (1− i/N)TH
5 Solve the initial value problem (3.50) to determine pcan,TS

k (t) over the interval
[tk, tk + TS + TB]

6 if pcan,TS

k is robustly valid by Def. 3.13 then
7 pcomk = pcan,TS

k

8 return

// no candidate is valid, I = ∅
9 pcomk = pcomk−1

10 return

3.2.5 Simulations and Experiments

Code and videos are available here: https://github.com/dev10110/gatekeeper. We test
two case studies to evaluate gatekeeper, where the second case study is also performed
using hardware experiments. A key strength of gatekeeper is that it can be composed with
existing perception, planning and control algorithms, and the various techniques used are
summarized in Table 3.2. The details are provided in the following paragraphs.

3.2.5.1 Firewatch Mission

We simulate an autonomous helicopter performing the firewatch mission, around a fire with
an initial perimeter of 16 km. The helicopter starts 0.45 km from the fire, and is tasked to fly
along the perimeter at a target airspeed of 15 m/s without entering the fire. The helicopter
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Table 3.2: Methods used in implementing gatekeeper for each case study. Details are
provided in the text.

Firewatch Mission Quadrotor Navigation

Sensed Data Image of fire RGBD image
Perception Output SDF SDF + SFC
Nominal Planner MPC Distance Map Planner (DMP)
Tracking Controller PD-Controller Geometric Controller
Backup Controller Fly perpendicular to fire Stop and yaw

Table 3.3: Comparison of gatekeeper (ours) with the nominal planner, FASTER [164], and
backup filters [153]. The distance to the firefront, velocity of the helicopter, and computation
time per iteration are reported for each method. IQR = interquartile range. ∗Since the
backup filter is run at each control iteration instead of every planning iteration, it runs
20 times as often as gatekeeper, i.e., is 5 times as computationally expensive as gatekeeper.

Distance to Fire [km] Speed [m/s] Comp. time [ms]
Minimum Mean Std. Mean Std. Median IQR

Target ≥ 0 0.100 - 15.0 - - -

Nominal Planner -0.032 0.098 0.032 15.14 0.73 27.32 4.37 Unsafe
FASTER [164] 0.040 0.101 0.030 12.60 2.08 78.50 20.64 Safe, but gets trapped in pocket
Backup Filters [153] 0.081 0.240 0.054 10.11 3.52 0.87∗ 0.05 Safe, but conservative and slow
Gatekeeper (proposed) 0.049 0.108 0.034 14.91 1.35 3.39 0.11 Safe

is modeled as

ẋ1 = x3 cosx4

ẋ2 = x3 sinx4

ẋ3 = u1

ẋ4 = (g/x3) tanu2,

where x1, x2 are the Cartesian position coordinates of the helicopter wrt an inertial frame,
x3 is the speed of the vehicle along its heading, x4 is the heading, and g is the acceleration
due to gravity. The control inputs are u1, the acceleration along the heading, and u2, the roll
angle. The inputs are bounded, with |u1| < 0.5g and |u2| < π/4 rad. This system models a
UAV that can control its forward airspeed and makes coordinated turns. Notice the model
has a singularity at x3 = 0, and the system is not control affine.

The fire is modeled using level-set methods [16]. In particular, the fire is described using
the implicit function ϕ : R × R2 → R, where ϕ(t, p) is the signed distance to the firefront
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Figure 3.7: Simulation results from Firewatch mission. (a) Snapshots of the fire and trajecto-
ries executed by each of three controller. The fire is spreading outwards, and the helicopters
are following the perimeter. The black line traces the nominal controller, the blue line is
based on the backup filter adapted from [153] and the green line shows the proposed con-
troller. (b, c) show specific durations in greater detail. At t = 0, the gatekeeper controller
behaves identically to the nominal controller, and makes small modifications when necessary
to ensure safety. The backup filter is conservative, driving the helicopter away from the
fire and slowing it down. (d) Plot of minimum distance to fire-front across time for each
of the controllers. (e) The nominal controller becomes unsafe 3 times, while FASTER, the
backup controller, and the gatekeeper controllers maintain safety. Animations are available
at https://github.com/dev10110/gatekeeper.

from location p at time t. Hence, the safe set is

S(t) = {x : ϕ(t, [x1, x2]
T ) ≥ 0}

where [x1, x2] are the Cartesian coordinates of the UAV.
The evolution of the fire is based on the Rothermel 1972 model [144]. Given the Rate of

Spread (RoS) function σ : R2 → R, the safe set evolves according to

∂ϕ

∂t
(t, p) + σ(p) ∥∇ϕ(t, p)∥ = 0 ∀p ∈ R2 (3.66)

The RoS depends on various environmental factors including terrain topology, vegetation
type, and wind [22, 144] but can be bounded [54]. The simulated environment used a RoS
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function that the controllers did not have access to. The only information the controllers
could use was the thermal image (to detect the fire within a ±1 km range of the UAV) and
the assumption that the maximum rate of spread is 8 km/h.

We compare our approach against the nominal planner and two state of the art methods
for similar problems, Fig. 3.7, Table 3.3. In particular, we compare (A) a nominal planner
(black), (B) FASTER [164] (purple), (C) Backup Filters [153] (blue) and (D) gatekeeper

(green). Since these methods were not originally developed for dynamic environments with
limited sensing, both methods (B, C) were modified to be applicable to this scenario.
See https://github.com/dev10110/gatekeeper for details. Method (A) represents the
baseline planner without any safety filtering. Methods (B), (C) and (D) are safety filtering
methods that use the nominal planner of (A) and modify it to ensure safety.

The simulation environment and each of the methods were implemented in julia, to
allow for direct comparison, using Tsit5() [134] with default tolerances. Each run simulates
a flight time of 50 minutes. The tracking controller was implemented as zero-order hold,
updated at 20 Hz. Measurements of the firefront were available at 0.1 Hz, triggering the
planners to update, intentionally slow to highlight the challenges of slow perception/planning
systems. The measurements are a bitmask image, defining the domain where ϕ ≤ 0, at a
grid resolution of 10 meters. These simulations were performed on a 2019 Macbook Pro
(Intel i9, 2.3 GHz, 16 GB).

In the nominal planner, a linear MPC problem is solved to generate trajectories that fly
along the local tangent 0.1 km away from firefront at 15 m/s. The planner uses a simplified
dynamic model, a discrete-time double integrator. This convex quadratic program (QP)
is solved using gurobi. The median computation time is 27 ms, using N = 40 waypoints
and a planning horizon of 120 seconds. The tracking controller is a nonlinear feedback
controller based on differential flatness [8, 114]. When tracking nominal trajectories, the
system becomes unsafe, going as far as 32 m into the fire.

In FASTER, the same double integrator model is assumed, and a similar MPC problem
is solved. We impose additional safety constraints, that the committed trajectory must lie
within a safe flight corridor [107] based on the signed distance field to the fire, corrected
based on the maximum fire spread rate. While this approach does keep the helicopter
outside the fire, it gets surrounded by the fire (Fig. 3.7a). This is ultimately due to the fact
that FASTER only plans trajectories over a finite planning horizon, and is therefore unable
to guarantee recursive feasibility in a dynamic environment. Due to the large number of
additional constraints on the QP, FASTER is about 3 times slower than the nominal planner.

In the Backup Filters approach, the backup trajectory is numerically forward propagated
on the nonlinear system over the same 120 second horizon, and can be computed efficiently,
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requiring less than 1 ms per iteration. Although this keeps the system safe, it does so at the
cost of performance: the mean distance to the fire is 0.24 km, more than twice the target
value, and the average speed is 10 m/s, 33% less than the target. This is because the desired
flight direction is perpendicular to the backup flight direction, and therefore the executed
trajectory is always off-nominal.

In gatekeeper, the committed trajectories are constructed by maximizing the interval
that the nominal trajectory is tracked, before implementing the backup controller. This
allows the system to follow the nominal, and deviate only when required to ensure safety.
As before, the nominal trajectory is 120 s long, and the backup is simulated for TB = 120 s.
To initialize gatekeeper, the first candidate trajectory is constructed using just the backup
controller, effectively setting Ts = 0. In our experiments this was sufficient ensure an initial
valid committed trajectory.

In Fig. 3.7c, we see that gatekeeper chooses to not fly into the pocket, since it cannot
ensure a safe path out of the pocket exists. gatekeeper is computationally lightweight, with
a median run time of 3.4 ms, more than 20 times faster than FASTER. This is because
gatekeeper searches over a scalar variable in a bounded interval, instead of optimizing
R4N+2N−2 variables as in the MPC problem.

We studied the effect of conservatism in the environment model. For instance, suppose
we assumed the max fire spread rate was 16 km/hr instead of 8 km/hr. Simulations showed
that gatekeeper still maintains safe, but the resulting trajectories are more conservative:
the mean distance to the fire increases by 37% to 0.148 km, and the mean speed decreases
by 19% to 12.14 m/s. Despite doubling the level of conservatism in the environment model,
we see a modest impact on the conservativeness of the resulting trajectories.

3.2.5.2 Quadrotor Navigation (Simulations)

We demonstrate the efficacy of the gatekeeper algorithm for a quadrotor flying through a
previously unobserved area, in both a high fidelity simulation, and hardware experiments.
The desired goal location is specified by the human operator. The quadrotor must simulta-
neously sense the environment, build a local map of the obstacles, plan a path to the goal,
filter the path using gatekeeper, and finally execute the committed trajectory. All of the
processing happens onboard, in realtime, and by using gatekeeper, the quadrotor does not
crash into any obstacles. Each step of the perception-planning-control stack is described
next, followed by a comparison to state-of-the-art methods. All simulations were run using
Gazebo and RotorS [65], on an AMD Ryzen 7 5800h CPU 16 GB with a NVIDIA RTX
3050Ti. All hardware experiments were performed on a 16 GB Nvidia Xavier NX.

An environment with a forest of cylinders of random sizes, locations, and heights is
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Figure 3.8: (Left) Simulation environment comprising of a quadrotor navigating in a 50 m
long corridor with randomly scattered cylindrical obstacles of various heights and radii. This
picture depicts the “Easy 1" world. (Right) The point-cloud sensor data received by the
quadrotor describing the environment. Using the point-cloud, a SDF representation of the
environment is constructed. A SFC, i.e., a convex polyhedron of obstacle-free space, centered
on the quadrotor is extracted and used as the perceived safe set. The nominal planner treats
unknown regions as free, while gatekeeper treats unknown regions as occupied.

generated in a corridor 50 m long, and 10 m wide. The start and goal locations are free, but
a safe trajectory between these may not exist in environments with many obstacles. Since
DMP is complete, the quadrotor will continue to explore until it finds a path to the goal.

Perception

The quadrotor is equipped with a front-facing Intel Realsense D455 camera, which has a
limited field of view of 87◦ × 58◦, and a limited sensing range of 8 meters, operating at
30 FPS. The incoming depth maps are fused into a ESDF representation using the NvBlox
package [118] at a resolution of 7.5 cm.

Path Planner

From the ESDF, a 2D slice of the obstacle geometry between 0.8-1.2 m height is extracted.
The path to the goal location is planned using the DMP [107], a computationally efficient
alternative to A* which also pushes the path away from the obstacles. Unknown cells are
treated as free cells. The planner takes less than 30 ms to replan trajectories, and is operated
at 5 Hz. Given a desired linear travel speed v = 2 m/s, time is allocated to each leg of the
returned path to construct the trajectory. This trajectory is not dynamically feasible for the
quadrotor’s nonlinear dynamics.
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Figure 3.9: Trajectories executed in the “Hard 1" world, using (a) MPC-based safety filter
(baseline) and (b) the proposed gatekeeper-based safety filter. The gray circles indicate
obstalces. Visually, the paths are similar, and are traversed with similar speeds. The color
indicates that for most of the trajectories, the speed is at the target of 1 m/s, but near the
obstacles (where there is greater replanning), the speeds vary more. (c) Box-and-whiskers
plot showing the computation time for perception, planning, and safety filtering. The com-
putation time for perception and path planning is similar with both safety filters, since both
use the same perception and path planning implementation. However, gatekeeper is signif-
icantly faster than the MPC-based safety filter.

Safety Filtering

In our implementation of gatekeeper, a 4× 4× 2 meter block centered on the quadrotor is
extracted from the ESDF. unknown voxels are treated as obstacles. A convex polyhedron
representing the safe region is constructed using the DecompUtil [107], and is the safe set Bk

used in gatekeeper. The environment is assumed static, but is unknown at the start of the
run - as new regions are observed, the perceived safe set expands to include new regions.

Next, gatekeeper (as described in Algorithm 3.1) is used to convert the nominal trajec-
tory into a dynamically feasible and safe trajectory for the quadrotor to follow.7 The backup
controller used is a stopping controller. For pcan to be valid, it must (A) lie within the
safe polyhedron mentioned above (accounting for the grid resolution (0.075 m), the quadro-
tor’s radius (0.15 m), and a robustness margin R = 0.1 m)8, (B) terminate within the safe
polyhedron accounting for the quadrotor radius and a robustness margin R + r = 0.2 m,
(C) terminate with zero speed and zero control input. These conditions guarantee that the

7We used a triple integrator model to validate trajectories, as in [110, 159, 164]. We tried the nonlinear
model in [100], but the communication latency between the Pix32 and Xavier NX degraded performance.

8Robustness margins were determined by flying the quadrotor, and measuring the tracking error as it
executed some trajectories. The measured error was 5-10 cm, and thus R = 0.1 m was chosen.
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Table 3.4: Summary of simulations in 15 different worlds with 3 difficulty levels, comparing
the performance of an MPC-based safety filter against gatekeeper. gatekeeper is able to
successfully reach the goal in more scenarios, and is an order of magnitude computationally
faster.

Goal Reached? Median Comp. Time [ms] Max Comp. Time [ms] Average Speed [m/s]

World MPC GK MPC GK MPC GK MPC GK

easy 1 True True 34.71 ± 0.10 3.28 ± 0.04 168.89 10.78 0.91 0.81
easy 2 True True 35.55 ± 0.11 3.42 ± 0.05 161.59 10.51 0.82 0.77
easy 3 True True 33.18 ± 0.12 3.26 ± 0.05 151.12 12.48 0.83 0.67
easy 4 True True 34.17 ± 0.25 3.33 ± 0.05 172.15 11.70 0.83 0.45
easy 5 True True 35.40 ± 0.20 3.36 ± 0.05 180.94 11.94 0.90 0.35
medium 1 True True 39.78 ± 0.20 3.27 ± 0.06 178.21 10.62 0.78 0.61
medium 2 False True 47.62 ± 1.10 3.27 ± 0.05 217.97 12.19 0.57 0.76
medium 3 True True 33.65 ± 0.08 3.18 ± 0.04 199.93 11.53 0.79 0.75
medium 4 False False 44.93 ± 2.03 3.23 ± 0.06 199.74 9.25 0.44 0.43
medium 5 True True 27.72 ± 0.10 3.23 ± 0.05 211.08 10.82 0.81 0.82
hard 1 True True 31.22 ± 0.16 3.18 ± 0.07 201.54 9.65 0.68 0.82
hard 2 False True 56.61 ± 0.61 3.41 ± 0.08 184.23 12.06 0.68 0.79
hard 3 False False 44.75 ± 0.54 3.35 ± 0.06 213.06 9.43 0.34 0.54
hard 4 True True 13.60 ± 0.09 3.25 ± 0.04 218.98 10.41 0.34 0.73
hard 5 False True 56.57 ± 4.26 3.25 ± 0.06 208.30 10.15 0.50 0.68

quadrotor can hover indefinitely at the terminal position.9 The maximum switch time was
TS ≤ 2 s, and the backup trajectory was propagated from Tb = 2.0 s. Note, due to the
safety filtering, the nominal trajectory may not be traversable, for instance through a nar-
row passage. When this occurs, gatekeeper publishes a virtual obstacle, forcing the nominal
planner to replan alternative routes.

Tracking Controller

The last committed trajectory tracked using a geometric tracking controller [100], running
at 250 Hz.

9Here, we do not consider the quadrotor’s limited battery life as a constraint. This is addressed in [126]
using the gatekeeper strategy.
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Benchmark

Our implementation of gatekeeper is compared with an MPC safety filter. In the MPC
filter, the following optimization problem is solved:

argmin
x∈XN+1,u∈UN

N∑
i=0

∥xi − [pnomk ]i∥2Q +
N−1∑
i=0

∥ui − [unomk ]i∥2R

s.t. xi+1 = Axi +Bui

xi ∈ Bk

x0 = x̂(tk), xN = xN−1

where [pnomk ]i = pnomk (tk + i∆T ) where ∆T = 0.02 seconds is the discretization step size.
A planning horizon of 2 seconds is considered, same as in our gatekeeper implementation.
[unomk ]i the corresponding control input. To avoid solving a nonlinear program, the dynamics
model assumed for the MPC safety filter is the linear double integrator. The set Bk is
the same safe flight polyhedron used in gatekeeper. The initial condition is required to
match with the estimated state, and the last constraint ensures that the quadrotor trajectory
terminates within the horizon. The resulting problem is a quadratic program, and solved
using OSQP [157].

Results

Fifteen different world environments were constructed with 3 difficulty levels, defined by the
density of obstacle cylinders (Fig. 3.8). The quadrotors were tasked to fly a linear distance of
54 meters, at a desired speed of 1 m/s. Figure 3.9 shows sample trajectories and compares the
computational cost of the baseline (MPC safety filter) and proposed (gatekeeper) strategies.
Table 3.4 summarizes the performance of each safety filter. Both the MPC and gatekeeper

algorithms prevented collisions. In some cases neither MPC nor gatekeeper were able to
reach the goal location, although gatekeeper was able to find a trajectory in more cases
than MPC. MPC was consistently slower than the gatekeeper, requiring approximately
10x the computation time. Finally the average speed of the quadrotor was similar with
both filters. Through this, we conclude that the performance of gatekeeper and MPC
are similar, although gatekeeper computationally efficient, while additionally handling the
nonlinear dynamics of the quadrotor.
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Nvdia Xavier NX 
Intel Realsense D455
Pix32V6 with custom
breakout board

30A 4-in-1 ESC
4s 3000mAh Battery
4x EMax RS2205S
4x 5045 Propellers

Figure 3.10: Quadrotor used for experiments. A combination of off-the-shelf components
and custom breakout boards is used to minimize weight and maximize performance.

3.2.5.3 Quadrotor Navigation (Experiments)

We also demonstrate the algorithm experimentally. A custom quadrotor was designed to
optimize the payload, and maximize the flight time (Fig. 3.10). The quadrotor’s wet weight
is 820 g, with a 15 min hover flight time. The perception, planning, and safety filtering
steps were all performed on an onboard computer, the NVIDIA Xavier NX. The low-level
geometric controller [100] was implemented on a Pix32V6c, communicating with the Xavier
over UART. The goal destination and yaw angle was specified by a human operator.

As in the simulations, the quadrotor uses the Realsense D455 camera’s RGBD images
to construct a map of the environment using NvBlox, plans a trajectory using DMP, and
filters the trajectory using gatekeeper.10 The last committed trajectory is tracked using the
geometric controller. Each of these steps were implemented as described in Section 3.2.5.2.

Figure 3.11 shows top-down snapshots of the map, and both the nominal and committed
trajectories. Initially, the quadrotor tries to fly through a gap between the green and red
obstacles. However, since the gap is too small for gatekeeper to certify that it is safe to
traverse through the gap,11 new trajectories are not committed, and the quadrotor executes

10In hardware, the path planner replans once every 2 seconds. The ESDF is updated at 5 Hz, and
gatekeeper is run at 20 Hz.

11The minimum gap required is the sum of (quadrotor diameter, 0.3 m) + (voxel size of map, 0.075 m) +
(tracking radius r, 0.1 m) + (robustness radius R 0.1 m) = 0.58 m. The gap was measured to be 0.45 m
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Figure 3.11: (a-e) Snapshots of the map, nominal trajectory, committed trajectory, and
executed path of the quadrotor. (f) Top-down view of the obstacle geometry.
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Path planner publishes nominal trajectory

Gatekeeper publishes committed trajectory

Figure 3.12: Each dot (cross) represents a timepoint when the committed (nominal) trajec-
tory is published. The gaps represent intervals when gatekeeper prevents unsafe trajectories
from being committed. During these times, the controller continues to track the the last com-
mitted trajectory.

its backup controller: stop and yaw. Once the nominal planner plans a new trajectory
towards the right gatekeeper allows a new trajectory to be committed. However, as the
quadrotor approaches this gap, again it is too narrow to safely traverse. This repeats a
few times before eventually the nominal planner finds the trajectory that indeed is safe to
traverse, and the quadrotor reaches the goal destination.

In Fig. 3.12, the times at which nominal and committed trajectories are published are
plotted. In our implementation using ROS2, when no new candidate trajectories are valid (as
in (3.55)), the gatekeeper node does not publish a new committed trajectory, and therefore
the controller continues to track the last committed trajectory. Therefore, in Fig. 3.12, the
path-planner publishes at regular intervals, but there are gaps when gatekeeper is running
but not publishing new committed trajectories. To allow the system to continue making
progress towards the goal, we publish a virtual obstacle along the nominal trajectory when
this happens, forcing the path planner to find a new trajectory to the goal. In this particular
run, we observed 9 such instances.

The experiments also highlighted some limitations of gatekeeper that can form the basis
for future study. In particular, suppose a nominal planner is poorly designed, and produces
trajectories that are collision free, but not desirable, e.g., if the nominal plan causes the drone
to jerk back and forth and yaw rapidly. Such a nominal trajectory could pass the validity
check 3.13, but could lead to the quadrotor chattering. In the future, we wish to investigate
how to co-design the gatekeeper with planners and controllers to avoid such undesired

across.
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trajectories. In our experiments, we have sometimes observed the nominal planner making
large and abrupt changes in the nominal trajectory, but the quadrotor was able to track the
committed trajectories.

Finally, further investigation into the design of backup controllers could yield interesting
directions for future research. In our current implementation, the backup controller stops
the quadrotor along the nominal trajectory. However, the position at which the quadrotor
comes to a stop could be designed, for example, to maximize the visibility of the unknown
regions. Such a backup controller would still maintain safety but also allow the quadrotor
to reason more efficiently about the environment it is operating in. Furthermore, to operate
this quadrotor in an environment with dynamic obstacles further attention will be needed
on the design of backup controllers. If one were to assume a bounded speed at which the
environment could move, the safe flight polyhedrons could quickly collapse to becoming
empty. Using semantic maps, for example [140], might help to identify the dynamic parts of
the environment, and overcome this issue.

3.2.6 Conclusion

This section proposes an algorithm (“gatekeeper") to safely control nonlinear robotic sys-
tems while information about dynamically-evolving safe states is received online. The algo-
rithm constructs an infinite-horizon committed trajectory from a nominal trajectory using
backup controllers. By extending a section of the nominal trajectory with the backup con-
troller, gatekeeper is able to follow nominal trajectories closely, while guaranteeing a safe
control input is known at all times. We have implemented the algorithm in a simulated aerial
firefighting mission and on-board a real quadrotor, where we demonstrated gatekeeper is
less conservative than similar methods, while remaining computationally lightweight. Vari-
ous comparisons to state-of-the-art techniques are also provided.

A key benefit of the gatekeeper approach is its applicability in dynamic environments
where the safe set is sensed online. This allows the method to be applied to a wide range
of scenarios where only limited safety information is known, for instance, overtaking and
merging scenarios for autonomous vehicles. A limitation of gatekeeper is the difficulty in
finding backup controllers and sets that are suitable for the robotic system and environ-
ment considered, particularly in time-varying environments. Ultimately the possible safety
guarantees rely on the ability to make forecasts of the environment given limited sensing in-
formation. Furthermore, when there are multiple safety conditions that must all be satisfied
simultaneously, one could either design a single backup controller to satisfy all the con-
straints, or design multiple separate backup controllers and switch between them. Both of
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these approaches have their challenges and their suitability is case-dependent. These strate-
gies require further analysis, an interesting direction for future work. Future directions also
include developing more general methods to identify backup controllers, and understanding
how the method can be applied in adversarial multi-agent settings.

3.2.7 Appendix: Worked Example for the Firewatch Scenario

This example demonstrates how the sets S(t),Bk(t), Ck(t) are related, using the firewatch
mission. For simplicity, consider a double integrator system,

ẋ = Ax+Bu (3.67)

where xpos = [x1, x2]
T is the position of the helicopter, and xvel = [x3, x4]

T is the velocity.
Say the fire starts at t = t0, at location p = [0, 0]T . The fire expands radially, with rate

of spread σ : R2 → R≥0, i.e., σ(p) is the rate of spread at a location p ∈ R2. To simplify the
algebra, assume the RoS depends only on ∥p∥, i.e, σ(p1) = σ(p2) for any ∥p1∥ = ∥p2∥. This
means that the fire always spreads out uniformly in a circle.

Therefore, the safe set is time-varying, described by

S(t) =
{
x : ∥xpos∥ ≥

∫ t

0

σ(r(τ))dτ

}
∀t ≥ 0 (3.68)

where r(t) is the radius of the fire at time t ≥ t0.
Since we don’t know σ, we don’t know S(t). Instead, we assume a reasonable upper

bound: σ(r) ≤ 2 m/s for all r ≥ 0.
Therefore, at t = t0, we can define an perceived safe set :

B0(t) = {x : ∥xpos∥ ≥ 2(t− t0)} ∀t ≥ t0 (3.69)

and clearly B0(t) ⊂ S(t) ∀t ≥ 0. Notice that B0(t) is not a controlled invariant set for the
double integrator.12

Suppose the system can directly measure the fire’s radius. Let the k-th measurement be
rk = r(tk). This allows us to define the k-th perceived safe set:

Bk(t) = {x : ∥xpos∥ ≥ rk + 2(t− tk)} ∀t ≥ tk (3.70)

12Technically, a higher-order CBF could be used to design a QP controller that renders a subset of B0(t)
forward invariant, but this is only possible since B0(t) is a sufficiently smooth function that we can analyze
analytically.
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One can verify

Bk(t) = {x : ∥xpos∥ ≥ rk + 2(t− tk)}

=

{
x : ∥xpos∥ ≥

∫ tk

t0

σ(r(τ))dτ + 2(t− tk)

}
⊂
{
x : ∥xpos∥ ≥

∫ tk

t0

σ(r(τ))dτ +

∫ t

tk

σ(r(τ))dτ

}
=

{
x : ∥xpos∥ ≥

∫ t

t0

σ(r(τ))dτ

}
= S(t)

i.e. Bk(t) ⊂ S(t) for all t ≥ tk.
Similarly, we can verify that for any k ≥ 0,

Bk+1(t) = {x : ∥xpos∥ ≥ rk+1 + 2(t− tk+1)}

=

{
x : ∥xpos∥ ≥ rk +

∫ tk+1

tk

σ(r(τ))dτ + 2(t− tk+1)

}
⊃ {x : ∥xpos∥ ≥ rk + 2(tk+1 − tk) + 2(t− tk+1)}

= {x : ∥xpos∥ ≥ rk + 2(t− tk)}

= Bk(t)

i.e., Bk(t) ⊂ Bk+1(t) for all t ≥ tk.
This proves that Assumption 3.4 is satisfied. Next, we define the backup controllers.
For any k ∈ N, suppose the state is xk = x(tk). The backup controller should drive the

system radially away from the fire. Define nk as the unit vector pointed at x(tk):

nk = xpos(tk)/ ∥xpos(tk)∥ (3.71)

Notice that if the position followed the reference

pref (t) = (1 + rk + 2(t− tk))nk (3.72)

then the reference is moving radially at a speed of 2 m/s, and therefore faster than the
maximum spread rate of the fire. Thus pref (t) is a safe trajectory for all t ≥ tk.

96
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radially

Figure 3.13: Depiction of the scenario in the worked example.

This leads to the following backup controller:

πB
k (t, x) = −K

([
xpos

xvel

]
−

[
pref (t)

2nk

])
(3.73)

where K ∈ R2×4 is a stabilizing LQR gain for the double integrator. This controller stabilizes
the system to Ck(t), where

Ck(t) =

{
x :

∥∥∥∥∥x−
[
pref (t)

2nk

]∥∥∥∥∥ ≤ 1

}
(3.74)

This set is controlled invariant using the backup controller πB
k . Geometrically, Ck(t) is a unit

norm ball that is moving radially at 2 m/s in the nk direction. Therefore, Ck(t) ⊂ S(t) for
all t ≥ tk, since the set is moving outwards radially at a speed higher than the maximum
spread rate.

This example demonstrates how S(t), Bk(t), Ck(t) can be defined for a given problem.
The main validation step in gatekeeper, will confirm whether after following the nominal
trajectory over [tk, tk+TS), the system is able to safely reach Ck(t) using the backup controller
πB
k .

While the sets were described analytically here, in simulations they were represented
numerically using SDFs.
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CHAPTER 4

Safety-Critical Perception

In the previous chapter, we have developed two methods of safety filtering at the planning
level. However, both assumed that the perception outputs are to some extent perfect. For
instance, in the differential flatness strategy we assumed both the state estimate and the safe
sets were known apriori exactly. In the gatekeeper strategy, we allowed for some uncertainty
in the state estimate, and in the dynamic evolution of the safe set, but we still assumed that
the safe set is known.

Here we start to relax this assumption. Our objective is to build autonomous systems
that can operate entirely using onboard sensors, and as part of this the perception modules
must produce both the state estimate as well as the obstacle map. This is often referred to
as the Simultaneous Localization and Mapping (SLAM) problem.

However, classical perception literature on SLAM focuses primarily on the accuracy of the
methods, instead of the correctness: there is often only empirical evidence that the algorithm
will correctly estimate the state estimate and the locations of the obstacles, and often do
not provide any indication of the maximum error of the estimates in real-time.

Here, we propose a modification to the obstacle mapping methods such that such bounds
can be derived, and identify a desired structure for these bounds such that they can integrate
with the rest of the planning and control modules effectively.
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4.1 Certifiably Correct Obstacle Mapping Despite

Odometry Drift

Accurate state estimation and mapping are essential for safe robotic navigation, as planners
and controllers rely on perception outputs to ensure the safety of planned trajectories or
control actions. Various methods have been developed to certify that controllers meet pre-
defined safety specifications [21, 69], and when real-time obstacle detection is necessary, it
is often intuitive to handle safety constraints in the planner [10, 110, 164]. These methods
typically assume perfect perception, a simplification that can lead to safety violations.

A perception module provides a pose estimates and constructs maps that represent ob-
stacle geometry, and can take a variety of formats, such as ESDFs [118, 128], polytopic
SFCs [107], occupancy log-odds [80], or NERFs [141]. Although recent advances in percep-
tion algorithms have achieved significant accuracy improvements [45, 117, 147, 161, 182],
formal error analysis is often lacking. Without quantified error bounds, guaranteeing the
safety of a closed-loop robotic system remains a challenge.

This section introduces a framework for “certifiably correct mapping" ensuring that
obstacle-free regions of a map remain correct despite odometry drift. The challenge is illus-
trated in Figure 4.1. Consider an environment W = F ∪ O, representing free and obstacle
spaces, respectively (Figure 4.1a). As a robot navigates, at the k-th time step it has created
a map Mk, comprising the supposedly safe space Sk, the unknown space Uk and the rec-
ognized obstacles Rk (Figure 4.1b). However, due to odometry drift, maps can misclassify
obstacles as free space, leading to potential safety violations as indicated in Figure 4.1c. We
address this by deflating safe regions in order to ensure Sk ⊂ F at all times (Figure 4.1d).

Recent work has explored perception with correctness guarantees. For example,
[139] achieves global optimization in pose graph optimization problems via a convex refor-
mulation, and [113] offers error-bounded localization in convex environments. The methods
in [3, 179] propose certifiably correct pointcloud registration and visual odometry. Sim-
ilarly [183] demonstrated that bounded attitude errors lead to bounded position errors.
Compared to [3] this section assumes that the incremental pose estimate is bounded in a
Lie-algebraic sense, allowing the proposed methods to be used with a wider range of odom-
etry algorithms than one in [3].

Our main contributions are as follows:

• The theoretical framework to construct and deflate the free space in obstacle maps
to ensure their correctness despite odometry drift. Assuming the odometry algorithm
reports the pose and the covariance of the incremental transform, we propose deflating
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Figure 4.1: Overview of notation and objectives. (a) depicts the operating environment,
where the world W is the union of the free space F and the obstacles O. The robot does
not know F or O. It starts at B0, and follows the gray trajectory to Bk building the map as
it goes. (b) depicts the ideal mapping output, where at the k-th timestep, the map Mk is
composed of the known safe region Sk, the unknown space Uk and the known obstacle set Rk.
(c) depicts the map produced by current state-of-the-art methods, where due to odometry
drift the map is erroneous: notice that the safe region (according to the constructed map)
is not a subset of the free space, Sk ̸⊂ F . (d) depicts the desired behavior of the certified
maps, where although the safe region is smaller, it is certifiably-correct: we can prove that
Sk ⊂ F .
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the supposedly safe region (Sk+1 is deflated relative to Sk) to ensure that it remains a
subset of the free region F .

• We prove the correctness and applicability of this framework on two popular and state-
of-the-art mapping frameworks: the polytopic SFCs of [107] and the ESDFs of [118].

• Beyond providing the theoretical analysis and proofs of correctness, we validate and
compare our approach with state-of-the-art baseline methods through extensive simu-
lations on the Replica dataset [158].

• Finally, we demonstrate the approach in a real-world experiment on a robotic rover. A
human teleoperates the rover using only the FPV feed and the obstacle map constructed
and streamed to the operator in real-time. The rover uses an onboard safety filter to
prevent collisions. Unlike baseline methods which result in collisions, our approach
prevents crashes by deflating the safe regions appropriately.

It is critical that we deflate Sk rather than inflate known obstacles Rk. If the obstacles are
inflated based on the accumulated odometry error, these obstacles can only grow in size, and
might eventually occupy the entire domain W . Instead, by deflating a safe region Sk, the
region that is certifiably safe shrinks, eventually becomes an empty set, and is removed from
memory (i.e., the region becomes part of Uk). When the region is observed by a sensor again,
it can again be added to Sk again. Computationally, this reduces memory requirements, and
mathematically this allows us to treat deflated obstacles as unknown regions and plan paths
accordingly.

4.1.1 Preliminaries and Problem Statement

Matrix Lie Groups

Here we present a brief review of Matrix Lie Groups in the context of this section, with
additional equations and details in Section 4.1.8.1. We refer the reader to the excellent
references [26, 111, 155] for a more complete description.

The Lie group SO(3) defines 3D rotations, and the group SE(3) defines 3D rigid trans-
formations. Both SO(3) and SE(3) are Matrix Lie groups, i.e., group elements are matrices,
and composition operator is the standard matrix multiplication operator. In SE(3) the group
action · : SE(3)× R3 → R3 transforms a point p from its representation in frame A to that
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in frame B. Given TB
A =

[
R t

0 1

]
∈ SE(3),

p|B = TB
A · p|A = Rp|A + t. (4.1)

The Lie algebra of a group is a vector space of all possible directions a group element can
be perturbed locally. The Lie algebras of SO(3) and SE(3) are so(3) and se(3) respectively.
These vector spaces are isomorphic to R3 and R6 respectively. The ∧ operator converts the
Euclidean vector to an element of the Lie Algebra, and ∨ does the inverse.

Consider a Lie group G with an associated Lie algebra g that is isomorphic to the Eu-
clidean vector space Rn. Given an element x ∈ g, we can convert it to the corresponding
group element using the exponential map, exp : g → G,

exp(x) =
∞∑
k=0

xk

k!
= I + x+

x2

2
+ · · · (4.2)

where I is the identity element in G. For convenience, we also define the Exp map, which
maps from the Euclidean vector space to the group directly, Exp : Rn → G,

Exp(ξ) = exp(ξ∧). (4.3)

The corresponding inverse operations are log : G → g and Log : G → Rn. For certain groups
including SE(3), these operations have analytic expressions [155, Appendix].

Uncertain Poses and Transforms

An uncertain pose or transform TB
A ∈ SE(3) is denoted

TB
A ∼ N (T̂B

A ,ΣT ),

where T̂B
A ∈ SE(3) is the mean estimate, and ΣT ∈ S6

++ is a covariance matrix. This indicates
TB
A is the transform

TB
A = T̂B

A Exp τ, (4.4)

where τ ∈ R6 is a random sample drawn from τ ∼ N (0,ΣT ).
Recall the group action p|B = TB

A · p|A. If the transform TB
A is uncertain, p|B follows a
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distribution and, to first order, is a normal distribution [26, 155]:

p|B =
(
TB
A · p|A

)
∼ N (p̂|B,Σp) (4.5)

where the mean and covariance are

p̂|B = T̂B
A · p|A ∈ R3, Σp = JΣTJ

T ∈ S3
++

with J =
[
R −R[p|A]×

]
∈ R3×6.

For the remainder of the section, we truncate the distribution making the following as-
sumption:

Assumption 4.1. Let TB
A ∼ N (T̂B

A ,Σ), where T̂B
A =

[
R t

0 1

]
. Then for any p|A ∈ R3, the

point p|B ∈ R3 satisfies

p|B = TB
A · p|A ∈ E (4.6)

where E ⊂ R3 is the ellipsoid

E =
{
p ∈ R3 :

∥∥∥Σ−1/2
p

(
p− T̂B

A · p|A
)∥∥∥ ≤ 1

}
, (4.7)

Σp = κJΣJT ∈ S3
++, J =

[
R −R[p|A]×

]
∈ R3×6.

for some κ > 0.1

In other words, the assumption is that when a point p is transformed from its repre-
sentation in frame A to that in frame B, the point p|B is contained within an ellipsoid E
centered on the estimated point T̂B

A · p|A, as defined in (4.7). The size and principal axes of
the ellipsoid are defined by the estimated transform T̂B

A and the covariance matrix Σ. This
allows us to bound the error of mapping points between frames, and the bound can be made
tighter if κ is increased, or if higher order approximations are used, as in [26]. Since we focus
on rototranslations between successive body frames, the transforms TB

A should be close to
identity where the first order approximations work well.

1κ chooses the probability the bound contains the point. For a d-dimensional normal distribution, x ∼
N (µ,Σ), the probability that

∥∥(κΣ)−1/2(x− µ)
∥∥ ≤ 1 is p ∈ [0, 1] such that κ = χ2

d(p), where χ2
d is the quantile

function of the chi-squared distribution with d degrees of freedom. For 3D points, κ = 2 corresponds to
p = 97%.
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Reference Frames

This section uses the inertial frame I, a mapping frame M , and the body-fixed frame at the
k-th timestep, Bk. Usually, M and I are equivalent, and M is defined such that at M = B0.
However, since we are considering odometry drift, M can drift relative to I. We assume that
I is the true inertial frame (in which the obstacles are static), and M is the reference frame
used to construct the state estimate and the map.

Problem Statement

Let O represents the obstacle geometry in a static environment W ⊂ R3. Both O and
F = W\O are assumed initially unknown. We assume neither set contains any isolated
points, and that F is closed. As with points, a set can be represented in a frame, i.e., we
say that O|Bk ⊂ R3 is the set of all obstacle points represented in frame Bk.

To avoid obstacles, we must build a map of the environment. At the k-th timestep, the
map is Mk, which consists of the (claimed) free-space Sk, the unknown space Uk, and the
(claimed) obstacle space Rk. We say that a map is correct if the claimed free space is indeed
a subset of the true free space. More formally,

Definition 4.1. A map M = S ∪ U ∪ R is the union of the (claimed) safe region S, the
unknown region U , and the (claimed) obstacle region R. At the k-th timestep, the map Mk

is correct if for all p|Bk ∈ R3,

p|Bk ∈ Sk|Bk =⇒ p|Bk ∈ F|Bk . (4.8)

In words, Mk is correct if Sk is a subset of the free space F when represented in the k-th
body-fixed frame.

The definition above is intentionally explicit about which reference frame various points
and sets are represented in since this is the source of the main problem tackled in this section.
Due to the odometry drift, there are two types of error common in state-of-the-art mapping
algorithms:

(A) Errors in constructing the map: In current state-of-the-art implementations, the map
is often represented computationally in the mapping frame M . Suppose at some time the
robot detects an obstacle (relative to its body-fixed camera) at a position p|Bk . It will update
the map to mark this point as an obstacle:

Sk+1|M = Sk|M\{T̂M
Bk

· p|Bk}, (4.9)

that is, the estimated location T̂M
Bk

· p|Bk is removed from the claimed free space. However,

104



notice that since the estimated transform T̂M
Bk

is used instead of the true transform TM
Bk

, the
location marked as an obstacle can be wrong. This problem is exacerbated since usually the
line connecting the camera and p|Bk is also marked free, and therefore the wrong locations
are marked as part of Sk+1.

(B) Errors in querying the map: Now suppose the robot wants to navigate the environ-
ment. It must therefore check whether a point relative to the body-fixed frame p|Bk is free.
To the best of our knowledge, all implementations will then check whether the corresponding
point in the map, p̂|M , is a free point, that is they check whether

p̂|M = T̂M
Bk

· p|Bk ∈ Sk|M . (4.10)

However notice again, since the estimated transform is used, this can lead to inconsistencies.
In particular, owing to the odometry drift, the inconsistency will be worse when the obstacle
point was inserted into the map many frames ago.2

In this section we overcome both such issues, by ensuring the map is always correct in the
body-fixed frame. An equivalent perspective is that we update the maps such that despite
using the estimated transform T̂M

Bk
the map will be constructed and queried correctly.

The problem statement therefore is as follows:

Problem 4.1. Consider a robotic system equipped with an RGBD camera operating in a
static environment with obstacles O ⊂ R3. Suppose an odometry module provides at each
frame k the estimated odometry T̂B0

Bk
∈ SE(3), the relative odometry T̂Bk

Bk+1
∈ SE(3) and a

covariance of the relative odometry ΣBk
Bk+1

∈ S6
++. Suppose a mapping module can construct

the best estimate map of the free space in the environment. Design a framework to cor-
rect the best-estimate map such that at each timestep, the map Mk is correct according to
Definition 4.1 despite the odometry drift.

Note, we also assume that if a point p ∈ R3 is occupied, and within the camera’s FoV,
it will be detected as an obstacle. This is a common implicit assumption in the mapping
literature. Note, an infrared depth camera often fails to detect transparent obstacles (e.g.,
windows and glass doors), or can fail if an obstacle has no texture that can be used by the
stereo block-matching algorithms. Such issues are beyond the scope of this section.

In the next two sections, we will demonstrate how to construct correct maps by mod-
ifying existing baseline mapping algorithms. In particular we will extend (A) a mapping

2It will also becomes clear that time is not the only factor - points inserted/queried further from the
robot will also be more inaccurate due to the larger moment arm that amplifies rotation errors. This is also
why common heuristic algorithms of time- or distance-based forgetting cannot guarantee the correctness of
the map. The methods proposed in this section will directly address such issues.
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algorithm [107] which uses polytopes to represent the map of free space, and (B) the map-
ping algorithm [118] which uses signed distance fields to represent the free space. Both
algorithms are depicted in Figure 4.2.

Depth Image + PointcloudRGB Image

��  �

Sensor Outputs

union of polytopes

represents the free space

Visualized: pointcloud + last polytope

��������������������

set of voxels with positive ESDF 

represents the free space

Visualized: pointcloud + 2D slice of ESDF

!�

surface level set of ESDF

represents obstacles

Visualized: surface mesh

"�#�

 !"�����#����#���$�%��#"�������

or

Mapping output: Approach 2Mapping output: Approach1

Figure 4.2: Two approaches to constructing an obstacle map. (Top row) An RGBD camera
provides (a) the first person RGB image, and (b) the depth image/pointcloud constructed
from stereo images. (Bottom row) The SFC approach represents the free space as a union of
polytopes, one of which is depicted in (c). The ESDF approach represents the world using
voxels, where each voxel stores the signed distance to the nearest obstacle. From this, both
the (d) ESDF at specific voxels or (e) obstacle surface locations can be extracted and used
for safe navigation. To aid the reader, in (c) and (d) the raw pointcloud is also visualized,
and in (d) the color-scheme is such that voxels are marked green if d > 0, and red otherwise.
This makes the map look binary, although it contains continuous values. Furthermore, note
both methods operate in 3D - the 2D slice is used for visualization.
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4.1.2 Approach 1: Certified Safe Flight Corridors

4.1.2.1 Background

In the first approach, one represents the obstacle-free region Sk at frame k as the union of n
polytopes3 (i.e., bounded and closed polyhedra),

Sk|Bk =
n⋃

l=1

P l
k (4.11)

where each polytope is of the form

P l
k = {p ∈ R3 : Al

kp ≤ blk}, (4.12)

This is often called the H-representation, since the polytope is defined by a set of half-
space constraints [101]. An example of a polytope extracted from a depth image is shown
in Figure 4.2c.

As the robot transitions from frame Bk to frame Bk+1, we can map each polytope from
the previous frame to the new frame, and maintain the polytopes in the robot’s body frame.

In the absence of odometry drift, one can directly compute the new polytopes:

P l
k+1 = {p ∈ R3 : Al

k+1p ≤ blk+1}, (4.13a)

Al
k+1 = Al

kR
T , (4.13b)

blk+1 = blk + Al
kR

T t, (4.13c)

using the estimated transforms

T̂
Bk+1

Bk
=

[
R t

0 1

]
. (4.14)

In the presence of odometry drift, however, the estimated transform T̂
Bk+1

Bk
is inexact, and

this method fails to guarantee P l
k+1 ∈ F . Therefore, Mk is not guaranteed to be correct.

4.1.2.2 Proposed Approach

In the presence of odometry drift, since the transform T
Bk+1

Bk
is uncertain, the method in (4.13)

does not work. Extending this approach to uncertain transforms is also not straightforward,
since in the H-representation, an uncertain perturbation to a half-space does not result in

3n can be different at each k.
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a new half-space. Here, we propose a novel method that uses the V-representation of the
polytope to circumvent this issue.

In the V-representation, the polytope is the convex-hull of a set of vertices. Denote the
set of vertices by

Vi = {vi,j}mi
j=1 ⊂ R3, (4.15)

where vi,j ∈ R3 is the j-th vertex on the i-th face of a polytope.
We will use the V-representation to compute a new (deflated) polytope Pk+1 from Pk.

The algorithm is described by the next Lemma and Theorem.

Lemma 4.1. Suppose TBk+1

Bk
∼ N (T̂

Bk+1

Bk
,Σk), where

T̂
Bk+1

Bk
=

[
R t

0 1

]
. (4.16)

Consider a polytope Pk that is obstacle free,

Pk = {p ∈ R3 : Akp ≤ bk} (4.17)

where Ak ∈ RN×3, bk ∈ RN . Denote the i-th row as ak,i ∈ R3. For each vertex vi,j ∈ Vi(Pk)

on the i-th face of the polytope, define

Ji,j =
[
R −R[vi,j]×

]
, Σi,j = κJi,jΣkJ

T
i,j, (4.18)

as in Assumption 4.1. Let each element of ρ ∈ RN be

ρi = max
j∈{1,...,mi}

√
aTk,iΣi,jak,i (4.19)

Define a new polytope as

Pk+1 = {p ∈ R3 : Ak+1p ≤ bk+1}, (4.20a)

Ak+1 = AkR
T , (4.20b)

bk+1 = bk + AkR
T t− ρ. (4.20c)

Given Assumption 4.1, Pk ∈ F|Bk =⇒ Pk+1 ∈ F|Bk+1, i.e., if Pk is obstacle-free, so is
Pk+1.

Proof Sketch. [See Section 4.1.8.2 for the full proof.] It suffices to show that any obstacle
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potentially on the boundary of Pk will not be in Pk+1 after the rigid transform. To do so,
we consider a potential obstacle on the i-th face of the polytope, and compute the ellipsoid
the obstacle could be in after the transform. We compute the tangent plane of the ellipsoid
normal to the i-th hyperplane, and compute the minimum shift necessary such that the
shifted hyperplane does not contain the ellipsoid. We use the convexity of the polytope
to show that the necessary shift on the i-th hyperplane is ρi, the maximum of the shifts
necessary at each of the vertices on the i-th hyperplane of the polytope. This deflaion, when
applied to each hyerplane of the polytope, guarantees that Pk+1 does not contain the obstacle
points.

Finally, we can construct the main theorem.

Theorem 4.2. Suppose the transform between frame is TBk+1

Bk
∼ N (T̂

Bk+1

Bk
,Σk). Given the

k-th map is defined as in (4.11), define the (k + 1)-th map as

Sk+1|Bk+1 =
N⋃
l=1

P l
k+1 (4.21)

where each polytope is defined using Theorem 4.1. Then, given Assumption 4.1,

Sk ⊂ F =⇒ Sk+1 ⊂ F , (4.22)

that is, if Mk is correct by Definition 4.1, the updated map Mk+1 will also be correct.

Proof. Directly apply Theorem 4.1 to each polytope in Sk.

In words, the theorem shows that when a each polytope in the map Mk is shrunk using
Theorem 4.1, the new safe region Sk+1 also remains certifiably obstacle-free. Once a given
polytope has shrunk to zero volume, it can be forgotten entirely. Recall that as new camera
frames are received, new polytopes can be constructed to define the free space in the operating
environment and added to the set Sk+1. We empirically study how quickly an environment
deflates in Table 4.3 and in Section 4.1.8.8. Naturally, if the odometry covariance is smaller,
the deflation rate is smaller Section 4.1.8.7.

Remark 4.1. Compare (4.13) with (4.20). The two are identical except for the −ρ vector
in (4.20c). Each element ρi ≥ 0, and therefore, this represents a shrinking operation. The
net effect is that we transform the polytope by the estimated transform, but then shrink the
polytope based on the odometry error covariance. Notice that this shrinking operation is tight:
since there could exist an obstacle on the face of the polytope (indeed this is how they are
constructed), the shrinking factor is the smallest allowable factor, by construction.
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Remark 4.2. In implementation, notice that one needs to compute Vi(Pk), the set of ver-
tices, and then update the polyhedron by (4.20c). Although this operation scales exponen-
tially with the number of faces [64], efficient implementations exist, especially for 3D poly-
topes [101]. Empirically, we observe each polytope has on the order of 10-20 faces when
using [107], and can be handled in real-time.

4.1.3 Approach 2: Certified ESDFs

4.1.3.1 Background

The Euclidean Signed Distance Field (ESDF) is defined as the function d : R3 → R,

d(p) = min
o∈O

∥o− p∥ , (4.23)

the minimum distance between the point p and all of the obstacles O. A 2D slice of the
ESDF is depicted in Figure 4.2d.

To evaluate (4.23), o and p must be expressed in a common frame, commonly referred to
as the mapping frame. Since this is done in the mapping frame, it is denoted as the function
dM : R3 → R. The claimed-safe region Sk is therefore

Sk = {p ∈ R3 : dM(p) ≥ 0} (4.24)

For safety-critical path planning and control, we need the ESDF at points relative to the
body-fixed frame. The common approach is to assume the odometry estimate is exact, and
determine d(p|Bk) by expressing it in the map frame and evaluating dM :

d(p|Bk) ≈ dM(T̂M
Bk

· p|Bk) (4.25)

However, since the estimate T̂M
Bk

is inexact, this method can lead to over- or under-estimates.
Overestimated distances are unsafe since they could lead to collisions.

4.1.3.2 Proposed Approach

The goal is to construct an ESDF that is safe, i.e., underestimates the distance to obstacles.
Using Definition 4.1, a Certified-ESDF is defined as

Definition 4.2. Let the obstacle set be O ⊂ R3, assumed static in frame I. Let the ESDF of
O be d : R3 → R. A Certified-ESDF (C-ESDF) at timestep k is a function dkM : R3 → R,
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such that for all points p|Bk ∈ R3,

d(p|Bk) ≥ dkM(T̂M
Bk

· p|Bk) (4.26)

where T̂M
Bk

∈ SE(3) is the estimated rototranslation between Bk and M .

Comparing (4.25) with (4.26), the goal of certification is to change the ≈ into ≥. That
is, a Certified-ESDF is one where for any body-fixed point p|Bk , if the point is expressed in
the mapping frame using the estimated rototranslation, we have underestimated the distance
to the nearest obstacle:

d(p|Bk) = min
o∈O

∥∥p|Bk − o|Bk
∥∥︸ ︷︷ ︸

true ESDF

≥ dM(T̂M
Bk

· p|Bk)︸ ︷︷ ︸
estimated ESDF

. (4.27)

To accomplish this, we propose a strategy of deflating the ESDF. We derive a recursive
guarantee to ensure the ESDF remains certified for all k.

Theorem 4.3. Suppose at timestep k ∈ N, the ESDF dkM : R3 → R is a Certified-ESDF.
Let the rototranslation between frames be TBk

Bk+1
∼ N (T̂Bk

Bk+1
,Σk). Let the dk+1

M : R3 → R be
defined by

dk+1
M (p|M) = dkM(p|M)−

√
λmax(Σp) (4.28)

for all p|M ∈ R3, where

T̂Bk
Bk+1

=

[
R t

0 1

]
, (4.29a)

J =
[
R −R[T̂Bk+1

M · p|M ]×

]
, (4.29b)

Σp = κJΣkJ
T . (4.29c)

and κ > 0 is as defined in Assumption 4.1. Given Assumption 4.1, dk+1
M is also a Certified-

ESDF at timestep k + 1.

Proof Sketch. [See Section 4.1.8.3 for the full proof.] Consider any point p|Bk+1 and evaluate
the potential positions it could correspond to in frame Bk. This is an ellipsoid as in Assump-
tion 4.1, and therefore the ESDF at p|Bk+1 must be the minimum of all of the ESDF values
for the corresponding points in the ellipsoid. Since, by definition, the Lipschitz constant of
an ESDF is one, this minimum ESDF can be lower bounded by the ESDF at the center
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minus the radius of the smallest sphere containing the ellipsoid. We use the eigenvalues of
the ellipsoid to compute the radius of sphere, arriving at the expression.

Remark 4.3. Notice that the correction is −
√
λmax(Σp) in (4.28) (different for each p). As

with the certified SFCs, this is a deflation operation that decreases the estimated distance to
an obstacle.

Remark 4.4. The implementation of this deflation operation is remarkably simple and easily
parallelized on a GPU. In our implementations, we added an additional deflation integrator
to the code in [118]. At each frame, when the relative odometry with covariance is received,
we can compute the deflation at each voxel in parallel using (4.28).

4.1.4 Safe Navigation with Certified Maps

Here we summarize the key ideas presented in this section, and suggest strategies to leverage
certified maps to achieve safe navigation.

A fundamental principle of our approach is ensuring that maps remain correct with respect
to the body-fixed frame. To achieve this, we deflate the safe regions of the map based on
the incremental odometry error at each timestep. The required deflation has an analytic
expression.

Our implementation is as follows. When the (k + 1)-th camera frame is received from
the sensor, we compute the odometry estimate, and its relative covariance. Next, we apply
the deflation step using the proposed algorithms. Finally, we incorporate new safe regions
identified by the depth image to assimilate new information while discarding regions that
can no longer be certifiably correct.

One can also maintain both the baseline and certified maps in memory simultaneously.
While the memory usage increases, the certified maps tend to be smaller than the full map,
maintaining both maps offers significant advantages. In particular, our certified mapping
methods can integrate naturally with existing safety filtering methods like [10, 164]. These
methods generate nominal trajectories to achieve mission objectives, but use a backup tra-
jectory to ensure that the robot can safely stop based on the currently available information.
In our framework, one can use the baseline map for nominal trajectory planning, but use the
certified map for collision and safety checks. This combination enables agile motion while
strictly guaranteeing safety.
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Figure 4.3: Visualization of a snapshot of the office0 environment mapped using the base-
line and certified SFC methods. (a, d) shows the office0 environment, while (b, e) and (c,
f) show the respective S sets at the 500-th timestep from an external and an internal view.
The baseline map claims a larger volume to be safe compared to the certified method (red
volume is larger than green volume). However, we can also see numerous regions where the
red region intersects with the ground truth mesh, indicating that the claimed safe region
contains obstacle points. In the certified method, we see no violations.
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Figure 4.4: Visualization of the maps generated using the baseline and certified ESDF meth-
ods on the office3 environment. In (a) we see the ground-truth mesh. In (b) and (c) we
can see the internal view after 500 timesteps. As in Figure 4.3, although the baseline method
maps a larger volume (red mesh is larger than green mesh), it also contains many violations.
In (e) and (f) we see a slice of the ESDF over time. The green region indicates the S set
at the respective times. The small black arrows point to various violations in the baseline
method, while in the certified methods we see no violations.
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4.1.5 Simulations

We present results on the accuracy and correctness of both approaches for certified mapping
presented above. As a reminder, the goal is to demonstrate that despite odometry drift, the
region reported by our algorithms to be a part of the free space is indeed obstacle-free. First,
we evaluate the performance of both the Certified SFCs and the Certified ESDFs methods
on the Replica dataset (described below) and compare it to various baselines. Second, we
have run hardware experiments with a rover, and show that by considering the certification
bound the rover can avoid collisions. Additional results are reported in Section 4.1.8.6
and Section 4.1.8.7.

Evaluation Method

We evaluated the performance of our implementations on the Replica dataset [158], with
ground-truth trajectories generated as in [188]. From the ground-truth trajectory the RGBD
image sequence was generated, and used as the inputs to the mapping algorithms. We
perturbed the trajectory to generate the estimated trajectory from a simulated odometry
system as follows:

T̂Bk
Bk+1

= TBk
Bk+1

Exp(τ), τ ∼ N (0,Σ) (4.30)

where TBk
Bk+1

∈ SE(3) is the transform between subsequent frames of the ground-truth tra-
jectory of the camera and T̂Bk

Bk+1
∈ SE(3) is the estimated transform between subsequent

frames used in the mapping algorithms. For our experiments we used Σ ∈ {1e−5I, 1e−6I}.
Evaluating the Absolute Translation Error (ATE) as in [184], the generated trajectories
had between 1 − 3% ATE, inline with the performance of state-of-the-art Visual Inertial
Odometry (VIO) methods. Each trajectory was 2000 frames long, running at 30 FPS.

Baselines

We compared our proposed certified approaches to the following mapping methodologies:

(A) Baseline SFC - At each camera frame, the depth map is used to construct a point-
cloud of obstacles within the current field of view. From this a convex polyhedron is
extracted, and appended to a list of safe polyhedrons. The union of these polyhedrons
is considered the safe flight region. We used the library [107] to perform the convex
decomposition.

(B) Heuristic SFC - This is the same algorithm as in (A), except that a time-based forget-
ting mechanism is introduced, as is common in robotic mapping implementations. In
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particular, we only keep the last 60 frames (2 seconds) of polyhedrons when construct-
ing the safe flight region.

(C) Baseline ESDF - At each camera frame, the depth map is used to update the Truncated
Signed Distance Field (TSDF) of the environment. At regular intervals a wave prop-
agation algorithm constructs/updates the ESDF of the environment. Regions with
positive ESDF are considered part of the safe flight region. We used the library [118]
to construct the TSDF and ESDF.

(D) Heuristic ESDF - This is the same algorithm as in (C), except that a distance-based
forgetting mechanism is introduced. In particular, we forget any TSDF and ESDF
voxels that are more than 3 m away from the camera.

These baselines will be compared to the certified methods proposed in this section:

(E) Certified SFC - This is the same algorithm as in (A), except that at each frame, each
polytope is deflated as described in Section 4.1.2.

(D) Certified ESDF - This is the same algorithm as in (C), except that at each frame, the
ESDF is deflated as described in Section 4.1.3.

Metrics

To evaluate the performance of the methods, we consider three metrics:

(I) Violation Rate: The violation rate measures the percentage of ground-truth mesh
points that (incorrectly) lie within the claimed free space. The violation rate should
be close to 0%.

(II) Maximum Violation Distance: For any violating point we measure the maximum
distance of the violation, i.e., how far into the claimed free space is an obstacle point.
The violation distance should be close to 0 mm. If there are no violating points, the
violating distance is 0 mm.

(III) Free-Space Volume: This measures the total volume of the space that is claimed to be
free. The free-space volume should be as large as possible.

Results

Tables 4.1, 4.2, and 4.3 summarize the results from the simulations. Figure 4.3 and Figure 4.4
visualize the results and qualitatively show the behavior of the proposed methods.
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Table 4.1: Violation Rates. This table summarizes the fraction of violating ground-truth
obstacle points for each environment and algorithm. This table shows results with Σ =1e-6I.

Violation Rates (%)
Algorithm office0 office1 office2 office3 office4 room0 room1 room2

Baseline SFC 18.60 % 12.76 % 10.13 % 12.74 % 14.44 % 10.74 % 19.17 % 6.85 %
Heuristic SFC 0.11 % 0.57 % 0.09 % 0.10 % 0.27 % 0.02 % 0.39 % 0.92 %
Certified SFC 0.0002% 0.0047% 0.0008% 0.0005% 0.0014% 0.0002% 0.0009% 0.0012%
Baseline ESDF 48.15 % 35.31 % 51.51 % 54.66 % 48.35 % 62.03 % 48.15 % 47.49 %
Heuristic ESDF 31.55 % 34.39 % 7.63 % 4.66 % 10.08 % 9.25 % 20.88 % 16.32 %
Certified ESDF 0.5443% 0.0610% 0.0809% 0.0227% 0.0538% 2.4259% 0.0149% 0.0519%

Table 4.2: Maximum Violation Distance. This table summarizes the distance by which vio-
lating ground-truth obstacle points penetrate the estimated free space for each environment
and algorithm. This table shows results with Σ =1e-6I.

Maximum Violation Distance (mm)
Algorithm office0 office1 office2 office3 office4 room0 room1 room2

Baseline SFC 102.7 95.3 159.7 177.6 125.5 117.1 191.4 85.0
Heuristic SFC 22.1 14.5 18.4 11.6 8.9 11.0 14.2 12.8
Certified SFC 0.0 0.9 0.4 0.9 1.7 0.9 0.7 0.7
Baseline ESDF 604.3 406.9 520.0 671.1 636.9 990.8 604.6 594.0
Heuristic ESDF 563.6 379.5 311.8 429.4 366.6 428.5 384.7 435.4
Certified ESDF 109.5 82.5 141.4 100.0 66.3 120.0 100.0 82.5

Table 4.3: Estimated Free Space Volume. This table summarizes the volume of the estimated
free space at the end of the simulation for each environment and algorithm. This table shows
results with Σ =1e-6I.

Estimated Free Space Volume (m3)
Algorithm office0 office1 office2 office3 office4 room0 room1 room2

Baseline SFC 34.8 17.6 40.8 56.6 63.3 53.0 38.7 29.4
Heuristic SFC 6.7 3.6 4.3 4.6 15.7 12.3 6.9 7.5
Certified SFC 5.7 2.6 3.6 3.0 12.5 9.1 5.8 4.4
Baseline ESDF 46.1 23.2 77.5 110.9 99.7 105.4 53.8 63.6
Heuristic ESDF 39.5 23.0 31.3 42.0 51.5 28.6 34.5 38.7
Certified ESDF 10.7 3.8 6.2 5.0 14.3 31.5 6.6 4.5
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Figure 4.3 visualizes one of the runs from the office0 environment. Figures (a, d) shows
the ground-truth mesh of the environment from two different views. In (b, e) we see the safe
flight polytopes in the baseline method visualized as the red region. One can see that the
red region clearly intersects with the ground-truth mesh, and each intersection represents a
violation. The violations are particularly noticeable for regions that were mapped further in
the past, and from non-convex and thin obstacles like the chair or table surfaces. In contrast,
in (c, f) we see the safe flight polytope from the proposed certified algorithms, drawn as the
green region. We can see that the green region is smaller than the red polytope, but it also
contains no violating points (see also Table 4.2 and Table 4.3). Effectively, we can see that
due to the odometry drift, the algorithm cannot be confident about the exact location of, for
example, the chair and the desk, and therefore these regions were removed from the map.
Although the volume of free space is smaller, the map is guaranteed to be correct.

From Table 4.1 we can observe that both certification methods significantly reduce the
number of violations. In the baseline methods, the violation rates are between 6 and 60%,
while in the certified methods, the violation rates are between 0-3%. Note, we cannot expect
the certified methods to have exactly zero violations, since we are using the truncated noise
model for odometry. Nonetheless, empirical performance of the certified methods still shows
that the proposed methods can effectively avoid classifying obstacle regions as free.

Furthermore, we can see that although the heuristic forgetting methods can also reduce
the number of violations, the level of reduction is hard to control. Since the forgetting
factor is tuned heuristically and independently of the true noise level in the system, it can
sometimes lead to good rejection of obstacles (as in the SFC method) or poor rejection of
obstacles (as in the ESDF).

From Table 4.2 we observe that the maximum distance a violating point intersects the
map is also reduced using the certified methods. We see that the maximum violation is
sub-millimeter for the SFC methods, demonstrating a reduction of 2 orders of magnitude
compared to the baseline. In the ESDF approaches, we still see a significant reduction in
the maximum violation distance (about an order of magnitude reduction), although there
are some violations on the order of 100 mm. This seems to be a limitation of the ESDF
approach, since the ESDFs are represented using discrete voxels computationally. We chose
a voxel size of 20 mm, and therefore the violations are on the order of 1-5 voxels of error.4

The source of this larger error is likely the dataset itself. We have checked which voxels
are causing these large errors, and it seems to be the voxels that are close to non-manifold

4Finer grid resolution can help, but will increase the computational and memory requirements. As a sense
of scale, each environment is on the order of 6× 6× 3 m, and therefore has approximately 300× 300× 150
voxels. See Table 4.4 for additional details.
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surfaces in the Replica dataset, for instance near the leaves of plants, or around table/chair
legs, which are thin and long. Near these surfaces, the raw data is inconsistent, and we
suspect that it leads to higher error rates than expected.

Finally, if we consider the volume of free space mapped in Table 4.3, we can see that
due to the certification, the volume of the estimated free space is lower for the certified
methods than it is for the heuristic or baseline methods. However, since the violation rate
of the uncertified methods is significant, the free space cannot be trusted for path planning
around obstacles. Despite the smaller volume of free space, the certified methods allow the
full region to be trusted when used in planning (Section 4.1.8.8).

Comparing the SFC and ESDF methods, in the results presented the SFC methods seem
superior, since they have fewer violations, and the violating points violate the free space by a
smaller distance. However this does come at the expense of expressiveness and computational
cost. The SFC methods require the use of unions of convex polytopes to represent the free
space, and in cluttered environments can sometimes lead to very small volumes of free space.
The ESDF implementations are also more mature, with implementations like [118] allowing
for efficient use of a GPU, which allows the ESDF to be computed more efficiently than the
SFC.

4.1.6 Rover Experiments

In this section we demonstrate the utility of the proposed certified mapping frameworks in
ensuring a robot can safely navigate an environment. We demonstrate that when a rover is
tasked to navigate through an environment, and in particular reverse blindly into a region
it previously mapped, the accumulated odometry error can lead to the rover colliding with
previous mapped obstacles. Instead, by using the proposed methods, the rover will avoid
traversing into regions that it can no longer certify are obstacle-free. Additional experiments
are reported in Section 4.1.8.8.

Experimental Setup

A block diagram of the experimental setup is shown in Figure 4.5a). We use a ground
rover, the AION R1 UGV equipped with an Intel Realsense D455 camera. All perception,
planning, and control is executed on the onboard computer, an Nvidia Orin NX 16GB. The
Realsense camera sends stereo infrared images to the Orin NX at 30FPS. A state-of-the-art
visual slam algorithm (Nvidia IsaacROS Visual SLAM) is used to compute the odometry
estimate. The Realsense camera also produces a depth image, which is sent to the obstacle
mapping library (an adapted version of Nvidia IsaacRos NvBlox) which constructs an ESDF
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Experimental Domain

Rover

Teleop Station

Tunnel

Rover

Nvidia 

OrinNX

Realsense

D455

Figure 4.5: Rover Experimental Setup. (a) Block diagram. The human is teleoperating the
rover using only the FPV feed and the reconstructed obstacle map computed and streamed
in real-time. The map is also used onboard the robot to stop the robot if it violates safety
constraints. The safety filter can either use the baseline ESDF or the Certified ESDF.
(b) Picture of the testing environment. The robot drives through the tunnel, mapping it as
it passes through. After exploring the corridors, the rover tries to return through the tunnel
in reverse, without remapping the tunnel. (c) shows the rover in more detail. The AION R1
UGV has been modified, with all sensing on Intel Realsense D455, and all compute on the
Nvidia OrinNX 16GB.
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Figure 4.6: Rover Experimental Results. (a, b) shows snapshots of the reconstructed obstacle
map and the estimated rover pose with the baseline method (a) and the certified method
(b). This is the view presented to the human teleoperating the robot. Note, two small black
boxes are drawn in each frame (in post) to indicate to the reader the location of the red and
green boxes during the experiment. These were not visible to the human operator during
the experiments. (c, d) show the final state of the robots at the end of the trajectory. In
(c), the baseline method the robot has crashed with the green obstacle, although looking at
the last panel of (a), we can see that the robot thinks it is in the middle of the tunnel in the
free space. In (d), we see the robot stopped 15 cm before crashing with the red obstacle,
and this is because the map has been deflated sufficiently that the safety filter prevents the
robot from continuing backwards. Notice between the second, third and fourth frames in (b)
the green regions near the bottom change into red regions, indicating the Certified ESDF
cannot certify that the red region is obstacle-free.
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of the environment in real-time. All parameters and code is available at [redacted].
A human operator uses a joystick to send desired linear and angular velocities to the robot.

Using the constructed ESDF, a safety filter forward propagates the robot’s state under a
desired command a short (0.5 s) horizon into the future and checks whether the trajectory
lies strictly within Sk. If so, the command is sent to the robots’ motor controllers. If not,
the safety filter zeros the linear command, and sends a reduced angular speed command.
This allows the robot to continue to spin to acquire new information about the environment,
without physically moving and potentially colliding with the obstacles. The safety filter was
tuned offline to ensure that in the absence of odometry drift, the robot stops within 15 cm
of the obstacle both when driving forwards or backwards.

To compute the certified-correct map, we use the techniques of Section 4.1.3 to compute
the certified ESDF representing the local geometry. To correctly deflate the ESDF, we
require the odometry estimate, and the covariance of the incremental transform between
successive camera frames, i.e., of T̂Bk

Bk−1
.

To the best of the author’s knowledge however, this information is not reported by any
state-of-the-art odometry/pose estimation algorithms. Most algorithms (including Nvidia’s
vSLAM) only report the covariance of the odometry estimate between the initial frame and
the current frame, i.e., of T̂Bk

B0
. In [111] the authors computed the covariance of relative poses

after solving a pose-graph optimization problem by using the Jacobian of the local solution
(see [111, Section IX.B] for details). However this only allows one to find the covariance of
relative transforms between keyframes, and does not allow one to find the relative transform
between successive camera frames.

Here, we use the following method to estimate the covariance between relative frames.
VSLAM reports the odometry estimates T̂Bk

B0
, T̂Bk+1

B0
, and the associated covariances ΣBk

B0
,

Σ
Bk+1

B0
. Assuming TBk

B0
and T

Bk+1

B0
are highly correlated since they are successive frames, we

can define a correlation coefficient ρ ∈ [−1, 1] (we use ρ = 0.99) between these camera
frames. We can then estimate the covariance of the relative transform Σ

Bk+1

Bk
along the lines

of [111]. The analysis is presented in Section 4.1.8.4.

Experimental Results

Figure 4.6 summarizes the results of the rover experiments, with additional trials available
in the supplementary video, all demonstrating similar outcomes.

The human operator’s task was to navigate the rover without line-of-sight through a
narrow tunnel, explore and map the environment, and then return to the starting location
by reversing through the tunnel. The rover was intentionally reversed through the tunnel
to avoid re-mapping the obstacle geometry, forcing it to rely on its previously constructed
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maps for navigation.
Snapshots in Figure 4.6a show the baseline mapping method. Initially, the tunnel and

the surrounding corridors are mapped accurately. As the operator tries to reverse through
the tunnel the final snapshot suggests that the rover is well aligned with the tunnel and
positioned safely within the green region S. However, despite this seemingly safe alignment,
the rover collided with an obstacle Figure 4.6c, a failure in the baseline mapping approach.

In contrast, our proposed method deflates the safe regions in response to the odometry
drift. In Figure 4.6b, the map initially classifies a large region as safe (green). However,
as rover reverses to the tunnel, the deflation has caused parts of the map to turn red,
indicating that these areas can no longer be certified to be obstacle free. Indeed, when the
rover reaches the boundary between red and green regions, the safety filter prevents further
motion, successfully preventing collision.

The same behavior was consistently observed across multiple trials with different trajec-
tories. Additional discussion on the effect and extent of the deflation is presented in Sec-
tion 4.1.8.8.

4.1.7 Conclusions

Limitations and Future Directions

While the proposed methods are provably correct, they rely on key assumptions, partic-
ularly Assumption 4.1, which truncates the normal distribution of pose perturbations to
bound the effects of a rototranslation on an obstacle point. Although this simplification
facilitates our framework, it may not hold in practice. Methods such as those in [26, 111]
could improve these approximations and warrant further exploration.

Additionally, we assumed that incremental odometry perturbations follow a normal dis-
tribution in the Lie algebra of SE(3). However, this assumption may not hold in practice,
especially in the presence of outliers (see e.g. [179]). A valuable direction for future work is
to rigorously characterize the error distribution of odometry systems, both analytically and
empirically.

We also highlight the need for perception algorithms to estimate and report the uncer-
tainty of incremental pose transforms, rather than overall pose error/covariance, which grow
unbounded without successful loop closures. Metrics such as relative translation and rotation
errors [184] or the correlation between pose uncertainties (as in [111]) should be computed
and reported. In lieu of this, our experiments estimated incremental pose error covariances
using the method described in Section 4.1.8.4. For certifiability guarantees, going forward
we will need odometry algorithms capable of directly reporting the incremental pose error
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covariance.
Our algorithm intentionally deflates the map, and this reduces the navigable volume for

the robot. It is challenging to estimate how much the volume reduces prior to a mission,
since the deflation depends on the exact obstacle geometry, features used by the odometry
algorithm, and the speed of the robot (which affects how quickly new parts of the environ-
ment are observed). Empirically, we have shown that as the odometry covariance decreases,
the volume of the free space increases, and approaches the volume of baseline methods in
the error-free case (Section 4.1.8.7). We also operated our rover in a larger room, and in Sec-
tion 4.1.8.8 we show empirically that the certified methods can yield similar or larger volumes
of free space than the heuristic method. Further analysis into this warranted.

Beyond odometry drift, there are other sources of error that can invalidate the correct-
ness of the map - the operating environment and each subsystem can introduce errors that
are hard to correct or even detect. For instance, depth estimation algorithms (e.g., block-
matching methods) can fail under conditions like glass surfaces or featureless walls. Similarly,
communication/computational latencies can introduce errors that are hard to characterize
with the current framework.

Summary

As robots increasingly operate in unstructured environments, the importance of tightly inte-
grated perception, planning, and control systems becomes evident. Our experiments demon-
strate that even over short distances, perception inaccuracies due to odometry drift can lead
to unsafe behaviors, including collisions.

This section presents a step toward building perception modules that not only generate
accurate state estimates and obstacle maps but also provide correctness guarantees. Specif-
ically, if the incremental odometry error per frame can be bounded, our framework modifies
(or deflates) obstacle-free regions in a map such that it remains correct at all times with
respect to the robot’s body frame.

We proposed two methods for implementing these corrections based on different map rep-
resentations: (I) Certified SFCs, and (II) Certified ESDFs. By constructively proving the
correctness of these methods, we developed algorithms that guarantee safe map modifica-
tions. Extensive simulations using high-quality datasets, along with real-world experiments
on a robotic rover, validate the effectiveness of our approach in creating certifiably-correct
maps.

A key insight from our rover experiments is the demonstration of failure modes in state-of-
the-art mapping methods. Unlike typical demonstrations, where robots map regions within
the camera’s field of view or use 360◦ sensors (e.g., LIDAR), we intentionally operated the
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robot in its blind spot to highlight the challenges posed by accumulated odometry drift. Our
proposed methods successfully mitigated these issues, preventing collisions and ensuring safe
navigation.

4.1.8 Appendix

4.1.8.1 Review of Matrix Lie Groups

Here we review the fundamentals of representing a pose and its uncertainty through the
language of Lie groups and Lie algebras. We refer to readers to [26, 111, 155] and references
therein for a more complete description.

The Lie group SO(3) is the set of valid 3D rotation matrices, and the group SE(3) is the
set of rigid transformations in 3D:

SO(3) =
{
R ∈ R3×3 : RRT = I3, |R| = 1

}
,

SE(3) =

{
T =

[
R t

0 1

]
∈ R4×4 : R ∈ SO(3), t ∈ R3

}
.

Both SO(3) and SE(3) are matrix Lie groups, i.e., the group composition operation is the
standard matrix multiplication operation.

The group action for SE(3) is · : SE(3) × R3 → R3, which transforms a point p from its

representation in frame A to that in frame B. Given TB
A =

[
R t

0 1

]
∈ SE(3),

p|B = TB
A · p|A = Rp|A + t. (4.31)

The tangent space centered at identity is called the Lie algebra of a Lie group. The Lie
algebra is a vector space of all possible directions an element of the group can be perturbed
locally. The Lie algebras of SO(3) and SE(3) are denoted so(3) and se(3) respectively:

so(3) =
{
ω ∈ R3×3 : ωT = −ω

}
,

se(3) =

{[
ω ρ

0 0

]
∈ R4×4 : ω ∈ so(3), ρ ∈ R3

}
.

These vector spaces are isomorphic to the Euclidean vector space R3 and R6 respectively.
The ∧ operator converts the Euclidean vector to an element of the Lie Algebra. For SO(3),
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∧ : R3 → so(3):

ϕ∧ =

ϕ1

ϕ2

ϕ3


∧

=

 0 −ϕ3 ϕ2

ϕ3 0 −ϕ1

−ϕ2 ϕ1 0

 (4.32)

while for SE(3), ∧ : R6 → se(3):

ξ∧ =

[
ρ

ϕ

]∧
=

[
ϕ∧ ρ

0 0

]
. (4.33)

The ∨ operator performs the inverse of ∧.
Given an element of the Lie algebra, we can convert it to the corresponding element of the

group using the exponential map. For SE(3), the exponential map is exp : se(3) → SE(3),

exp(X) =
∞∑
k=0

Xk

k!
= I +X +

X2

2
+ · · · (4.34)

For convenience, we also define the Exp map, which maps from the Euclidean representation
directly to the group element, Exp : R6 → SE(3),

Exp(ξ) = exp(ξ∧). (4.35)

Analytic expressions for this are provided in [155, Appendix]. The corresponding inverse
operations are log and Log.

The adjoint matrix of SE(3) at T ∈ SE(3) is the unique matrix AdT ∈ R6×6 such that

T Exp(ξ) = Exp(AdT ξ)T (4.36)

for all ξ ∈ R6. Again, the analytic expression is available in [155, Appendix].

4.1.8.2 Proof of Theorem 4.1

Before we prove Theorem 4.1, we derive a separating hyperplane result, Theorem 4.4. It
defines the hyperplane that separates potential obstacle points from the free space after an
uncertain rigid transformation.

Lemma 4.4. Let the transform between two frames be TB
A ∼ N (T̂B

A ,Σ). Consider a point
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p|A ∈ R3. Given Assumption 4.1, for any non-zero vector a ∈ R3,

p|B = TB
A · p|A ∈ H (4.37)

where

H = {p ∈ R3 : aTp ≥ r} (4.38a)

r = aT (T̂B
A · p|A)−

√
aTΣpa (4.38b)

and Σp ∈ S3
++ is as defined by Assumption 4.1.

Proof of Theorem 4.4. By Assumption 4.1, the transformed point satisfies

p|B ∈ E =
{
p ∈ R3 :

∥∥Σ−1/2
p (p− p̂)

∥∥ ≤ 1
}

where p̂ = T̂B
A · p|A, and Σp ∈ S3

++ is defined in Assumption 4.1. Next, we define

p⊥ = p̂− Σpa√
aTΣpa

such that p⊥ ∈ R3 is on the surface of the ellipsoid and has a surface normal −a. Therefore,
the set of points H = {p ∈ R3 : aT (p− p⊥) ≥ 0} contains the ellipsoid, i.e., E ⊂ H,

r = aTp⊥ = aT p̂− aTΣpa√
aTΣpa

= aT p̂−
√
aTΣpa

which completes the proof.

We can now prove Theorem 4.1.

Proof of Theorem 4.1. It suffices to show that any obstacle potentially on the boundary of
Pk will not be in Pk+1. Consider an obstacle point o|Bk = p|Bk + ϵak, where ϵ > 0 and p|Bk

is a point on the surface of Pk. Then for some i ∈ {1, ..., N},

aTk,ip|Bk = bk,i.
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After the rigid transformation, by Theorem 4.4, o|Bk+1 ∈ E ⊂ {p : aTk+1,ip ≥ r} where

r = aTk+1,i(T̂
Bk+1

Bk
· o|Bk)−

√
aTk+1,iΣpak+1,i

= aTk+1,i(R(p|Bk + ϵak,i) + t)−
√
aTk+1,iΣpak+1,i

= aTk,i(p|Bk + ϵak,i) + aTk,iR
T t−

√
aTk+1,iΣpak+1,i

= bk,i + ϵ ∥ak,i∥2 + aTk,iR
T t−

√
aTk+1,iΣpak+1,i

= bk+1,i + ϵ ∥ak,i∥2 + ρi −
√
aTk+1,iΣpak+1,i

Now consider the last term:√
aTk,i+1Σpak+1,i =

∥∥Σ1/2
p ak+1,i

∥∥
=
∥∥∥√κΣ1/2

k JTak+1,i

∥∥∥
=

∥∥∥∥∥√κΣ1/2
k

[
RT

−(R[o|Bk ]×)
T

]
ak+1,i

∥∥∥∥∥
=

∥∥∥∥∥√κΣ1/2
k

[
ak,i

[o|Bk ]×ak,i

]∥∥∥∥∥
=

∥∥∥∥∥√κΣ1/2
k

[
ak,i

−[ak,i]×o|Bk

]∥∥∥∥∥
=

∥∥∥∥∥√κΣ1/2
k

[
ak,i

−[ak,i]×p|Bk

]∥∥∥∥∥
where in the last line, we used [ak,i]×(ϵak,i) = 0.

Finally, since Σk is positive definite, this expression is convex wrt p|Bk . Considering p|Bk

must be some convex combination of the vertices on the i-th face,

∥∥Σ1/2
p ak+1,i

∥∥ ≤ max
j∈{1,...,mi}

∥∥∥∥∥√κΣ1/2
k

[
ak,i

−[ak,i]×vi,j|Bk

]∥∥∥∥∥
= ρi

where vi,j|Bk is the j-th vertex on the i-th face of Pk.
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Therefore, we have

r = bk+1,i + ϵ ∥ak,i∥2 + ρi −
∥∥Σ1/2

p ak+1,i

∥∥
≥ bk+1,i + ϵ ∥ak,i∥2 > bk+1,i,

that is,

o|Bk+1 ∈ E ⊂ {p : aTk+1,ip ≥ r},

=⇒ o|Bk+1 ̸∈ {p : aTk+1,ip ≤ bk+1,i}

which completes the proof.

4.1.8.3 Proof of Theorem 4.3

Proof. Consider any point p|Bk+1 . When represented in frame Bk, it could correspond to a
set of points within the ellipsoid

p|Bk ∈ E = {p ∈ R3 :
∥∥Σ−1/2

p (p− p̂)
∥∥ ≤ 1}

where p̂ = T̂Bk
Bk+1

· p|Bk+1 , and Σp ∈ S3
++ is as defined by Assumption 4.1. Therefore,

d(p|Bk+1)
(1)

≥ min
p|Bk∈E

d(p|Bk)

(2)

≥ min
p|Bk∈E

dkM(T̂M
Bk

· p|Bk)

(3)

≥ dkM(T̂M
Bk

· p̂)− diam(E)/2
(4)
= dkM(T̂M

Bk
T̂Bk
Bk+1

· p|Bk+1)−
√
λmax(Σp)

(5)
= dkM(T̂M

Bk+1
· p|Bk+1)−

√
λmax(Σp)

(6)
= dk+1

M (T̂M
Bk+1

· p|Bk+1)

where diam(E) is the diameter of E . (1) is true by defition, (2) uses the fact that dkM is a
certified-ESDF. (3) is true because ESDFs have unit gradient everywhere, (4) uses the eigen-
value of Σp to bound the ellipsoid with a sphere, and (5), and (6) are basic simplifications.
Therefore, dk+1

M is also a certified-ESDF.
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4.1.8.4 Extracting Covariance of Relative Transforms from Odometry with Co-
variance

To the best of the author’s knowledge, all Visual Odometry (VO)/VIO/SLAM algorithms
report the mean odometry estimate and the covariance with respect to the initial frame: at
the k-th frame, the following quantities are available:

T̂B0
Bk

∈ SE(3), ΣB0
Bk

∈ S6
++ (4.39)

i.e., the pose of the k-th body frame with respect to the initial frame, and the covariance of
the estimate.

However, to use the frameworks proposed in this section, the relative transform and its
covariance are required:

T̂Bk
Bk+1

∈ SE(3), ΣBk
Bk+1

∈ S6
++. (4.40)

Here we detail a method to obtain these quantities.
Consider the following result adapted from [111, Section VIII] to match the convention

used in this section.

Lemma 4.5. Let Tij, Tik, Tjk ∈ SE(3) represent the poses between coordinate frames
(i, j), (i, k), and (j, k) respectively. Let T̂· be the corresponding estimated transform. Let

Tij = T̂ij Exp(ξij) (4.41)

and similar for (ik), (jk). Suppose[
ξij

ξik

]
∼ N

([
0

0

]
,

[
Σij Σij,jk

ΣT
ij,ik Σik

])
. (4.42)

Then, the estimated relative transform is

T̂jk = T̂−1
ij T̂ik (4.43)

and the associated covariance is (to first order)

Σjk = AΣijA
T + Σik − AΣij,ik − ΣT

ij,jkA
T , (4.44)

where A = AdT̂−1
jk

∈ R6×6 is the adjoint matrix of SE(3) at T̂−1
jk .
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Notice that the negative signs on the cross terms implies that a non-zero Σij,jk decreases
the covariance of the relative pose.

Proof. Since Tjk = T−1
ij Tik, the following must hold:

T̂jk Exp(ξjk) =
(
T̂ij Exp(ξij)

)−1 (
T̂ik Exp(ξik)

)
= Exp(−ξij)T̂−1

ij T̂ik Exp(ξik)

= Exp(−ξij)T̂jk Exp(ξik)

= T̂jk Exp(−AdT̂−1
jk
ξij) Exp(ξik)

where in the last equality we used the following property of the adjoint matrix: Exp(ξ)T =

T Exp(AdT−1 ξ) for any T ∈ SE(3) and ξ ∈ R6.
Defining ξ′ij = −AdT̂−1

jk
ξij, we have

Exp(ξjk) = Exp(ξ′ij) Exp(ξik)

and therefore using the Baker-Campbell-Hausdorff (BCH) formula (see [111]), the first order
estimated covariance is

E[ξjkξ
T
jk] ≈ E[ξ′ijξ

′
ij
T ] + E[ξikξ

T
ik]︸ ︷︷ ︸

2nd order diag. terms

+ E[ξ′ijξ
T
ik] + E[ξikξ

′
ik

T ]︸ ︷︷ ︸
2nd order cross terms

= AΣijA
T + Σik − AΣij,ik − ΣT

ij,jkA
T

where A = AdT̂−1
jk

. This completes the proof.

We can now apply this lemma to estimate the relative transforms between successive
frames. Recall the odometry algorithm defines the covariances as

TB0
Bk

= T̂B0
Bk

Exp(ξk,0), ξk,0 ∼ N (0,Σk,0) (4.45)

and similar for k + 1. The perturbations ξ are assumed to be correlated,[
ξk,0

ξk+1,0

]
∼ N

([
0

0

]
,

[
Σk,0 Σk,0;k+1,0

∗ Σk+1,0

])
(4.46)

where the ∗ indicates to the symmetric element.
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We assume that the two poses are highly correlated, with a correlation coefficient ρ ∈
[−1, 1], (we chose ρ = 0.99). Then,

Σk,0;k+1,0 = ρ
(
Σk,0Σ

T
k+1,0

)1/2 (4.47)

Then, using Theorem 4.5, the estimated relative transform is

T̂Bk
Bk+1

= (T̂B0
Bk

)−1T̂B0
Bk+1

(4.48)

and the estimated relative covariance is

ΣBk
Bk+1

= AΣB0
Bk
AT + ΣB0

Bk+1
− AΣ× − ΣT

×A
T (4.49)

where

Σ× = ρ
(
ΣB0

Bk
(ΣB0

Bk+1
)T
)1/2

, A = Ad
(T̂

Bk
Bk+1

)−1 .

Note, the adjoint matrix for T =

[
R t

0 1

]
∈ SE(3) is

AdT =

[
R [t]×R

0 R

]

and AdT−1 = (AdT )
−1 [155].

4.1.8.5 Replica Dataset Environment Details

Table 4.4 shows the size and volume of the bounding box for each environment used in the
simulation studies. It also shows the number of mesh points in the environment.

Table 4.4: Size and volume of each environment used.

Env. Length X (m) Length Y (m) Length Z (m) Bounding Box Volume (m3) Number of Mesh Points

office0 4.40 5.01 2.99 65.95 589 517
office1 4.81 4.11 2.80 55.24 423 007
office2 6.47 8.14 2.77 145.89 858 623
office3 8.64 9.20 3.10 246.85 1 187 140
office4 6.55 6.51 2.82 119.96 993 008
room0 7.76 4.70 2.81 102.43 954 492
room1 6.65 5.73 2.75 104.81 645 512
room2 6.77 4.95 3.59 120.34 722 496
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4.1.8.6 Additional Simulation Results

Table 4.5 and Table 4.6 show additional results of the performance of the SFC and ESDF
methods on the Replica dataset. Here we show the results from a trajectory perturbed by
Σ =1e-5I and Σ =1e-6I.

Table 4.5: Results of the three Safe Flight Corridor (SFC) methods on the Replica dataset.
Each environment was run with Σ = σ2I for two different σ2 values, 1e-5 and 1e-6.

Violation Rate (%) Max Violation (mm) SFC Volume (m3)
Env σ2 Baseline Heuristic Certified Baseline Heuristic Certified Baseline Heuristic Certified

office0 1e-6 18.6% 0.1% 0.0% 102.74 22.05 0.03 34.8 6.7 5.7
1e-5 32.5% 0.6% 0.0% 397.89 33.83 0.03 38.9 6.8 4.8

office1 1e-6 12.8% 0.6% 0.0% 95.30 14.48 0.86 17.6 3.6 2.6
1e-5 12.9% 0.1% 0.0% 373.39 24.65 0.86 17.7 3.7 2.0

office2 1e-6 10.1% 0.1% 0.0% 159.66 18.42 0.39 40.8 4.3 3.6
1e-5 21.3% 0.9% 0.0% 299.11 21.93 0.39 44.9 4.3 3.0

office3 1e-6 12.7% 0.1% 0.0% 177.65 11.61 0.88 56.6 4.6 3.0
1e-5 16.5% 0.0% 0.0% 460.25 7.38 0.94 57.9 4.6 0.9

office4 1e-6 14.4% 0.3% 0.0% 125.48 8.91 1.69 63.3 15.7 12.5
1e-5 24.6% 4.7% 0.0% 262.23 82.75 1.69 66.5 16.1 10.6

room0 1e-6 10.7% 0.0% 0.0% 117.12 11.02 0.95 53.0 12.3 9.1
1e-5 20.1% 0.5% 0.0% 396.74 47.97 0.95 55.8 12.3 8.0

room1 1e-6 19.2% 0.4% 0.0% 191.43 14.20 0.71 38.7 6.9 5.8
1e-5 25.7% 1.1% 0.0% 377.01 23.68 0.71 39.5 6.7 5.3

room2 1e-6 6.8% 0.9% 0.0% 85.02 12.85 0.65 29.4 7.5 4.4
1e-5 11.1% 1.5% 0.0% 322.36 25.63 0.65 30.1 7.5 1.8

4.1.8.7 Effect of Odometry Covariance

4.1.8.8 Effect of the Deflation on the Volume of Certified Free Space

Due to the deflation of the free space in the certified methods, the volume of space that a
path planner can use to navigate the robot will be smaller than in the baseline methods.. In
this section, we show qualitatively and quantitatively the volume of free space usable by a
robotic system.

The rover was operated in a room approximately 40 × 20 m large drawn in Figure 4.8.
Starting in the middle, the robot was teleoperated to explore and map the room. The robot
has a horizontal field of view of 75◦, and a maximum depth integration distance of 8 m. This
means that from the depth image, the maximum distance that NvBlox will mark as free or
safe is 8 m from the camera origin. Thus, in these experiments, the heuristic method also
uses a forgetting radius of 8 m.

A quantitative comparison of the algorithms is presented in Figure 4.9a, b. In (a) we can
see the area of the claimed safe region by each of the three methods. Although the claimed
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Table 4.6: Results of the three Euclidean Signed Distance Field (ESDF) methods on the
Replica dataset.

Violation Rate (%) Max Violation (mm) ESDF Volume (m3)
Env σ2 Baseline Heuristic Certified Baseline Heuristic Certified Baseline Heuristic Certified

office0 1e-6 48.1% 31.6% 0.5% 604.3 563.6 109.5 46.1 39.5 10.7
1e-5 21.2% 11.8% 0.5% 384.2 322.5 107.7 42.3 38.1 10.9

office1 1e-6 35.3% 34.4% 0.1% 406.9 379.5 82.5 23.2 23.0 3.8
1e-5 11.1% 10.6% 0.3% 172.0 172.0 93.8 21.9 21.8 4.2

office2 1e-6 51.5% 7.6% 0.1% 520.0 311.8 141.4 77.5 31.3 6.2
1e-5 23.8% 2.0% 0.1% 212.6 253.8 100.0 68.7 31.1 6.2

office3 1e-6 54.7% 4.7% 0.0% 671.1 429.4 100.0 110.9 42.0 5.0
1e-5 28.2% 1.5% 0.0% 330.5 226.3 72.1 96.9 41.4 6.0

office4 1e-6 48.3% 10.1% 0.1% 636.9 366.6 66.3 99.7 51.5 14.3
1e-5 21.0% 3.9% 0.1% 260.0 215.4 69.3 90.9 50.9 14.4

room0 1e-6 62.0% 9.2% 2.4% 990.8 428.5 120.0 105.4 28.6 31.5
1e-5 34.4% 3.2% 3.2% 335.3 244.1 164.9 90.9 27.6 32.9

room1 1e-6 48.1% 20.9% 0.0% 604.6 384.7 100.0 53.8 34.5 6.6
1e-5 17.5% 8.8% 0.0% 240.0 169.7 72.1 47.6 33.1 6.9

room2 1e-6 47.5% 16.3% 0.1% 594.0 435.4 82.5 63.6 38.7 4.5
1e-5 21.9% 5.1% 0.0% 291.9 200.0 66.3 56.8 37.8 9.5

Table 4.7: Performance of the three Euclidean Signed Distance Field (ESDF) methods in
the Office0 environment under varying odometry covariance at κ = 3.

Violation Rate (%) Max Violation (mm) ESDF Volume (m3)
σ2 Baseline Heuristic Certified Baseline Heuristic Certified Baseline Heuristic Certified

1e-04 61.09% 43.46% 0.19% 1.24 1.24 0.17 63.87 45.37 10.68
1e-05 48.15% 31.55% 0.50% 0.60 0.56 0.11 46.14 39.46 10.74
1e-06 21.16% 11.79% 0.49% 0.38 0.32 0.09 42.33 38.11 10.94
1e-07 5.17% 2.75% 0.49% 0.22 0.19 0.10 41.79 37.93 11.59
1e-08 2.04% 1.72% 0.54% 0.18 0.13 0.13 41.70 37.86 16.54
1e-09 1.94% 1.54% 0.62% 0.18 0.12 0.16 41.69 37.85 31.52
1e-10 1.91% 1.51% 0.77% 0.18 0.11 0.16 41.69 37.85 37.18
1e-11 1.93% 1.53% 1.21% 0.18 0.11 0.16 41.69 37.86 41.20
1e-12 1.93% 1.53% 1.35% 0.18 0.11 0.16 41.69 37.86 41.59

134



1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4
Odometry Error Covariance  [-]

0

10

20

30

40

50

60

70

Vi
ol

at
io

n 
Ra

te
 [%

]

Violation Rate (%) vs Odometry Error Covariance
Baseline
Heuristic
Certified

1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4
Odometry Error Covariance  [-]

0

10

20

30

40

50

60

70

(C
la

im
ed

) F
re

e 
Vo

lu
m

e 
[m

3 ]

(Claimed) Free Volume vs Odometry Error Covariance
Baseline
Heuristic
Certified

Figure 4.7: Plots of the effect of the odometry covariance on the performance of the three SDF
methods. On the left, we can see that as the odometry covariance increases, the maximum
violation rate increases, except for the certified method. The right plot shows that the volume
of claimed free space (incorrectly) increases with odometry covariance, while it (correctly)
decreases with the certified method.

free region is largest for the baseline method, as discussed below, the map is erroneous. The
certified and heuristic methods have similar free area, although the heuristic method is also
often incorrect.

In Figure 4.9b, we show the distance to the furthermost safe point from the robot position.
This gives an indication of extent of the map that would be free if it were not for the obstacles
in the environment. Here, we can see that compared to the maximum integration distance
of 8 m, the certified method has its furthermost safe voxel approximately 12 m away, and
upto 18 m away. In contrast, the heuristic method is clipped at 8 m. The evolution of the
maps in time is clearer in the accompanying video, where the FPV and third person view of
the robot are also drawn.

Slices of the ESDF and the Certified ESDF are shown in Figure 4.9c, d. The robot’s tra-
jectory is also drawn. Compare Figure 4.9c1-c4. We can see that the map drifts significantly
- in (c1) we use a gray dashed line to highlight the end of the corridor as mapped at that
time. In (c4), we draw the corridor mapped in (c1) as well as the newly mapped corridor,
and we can see a significant shift in the map. In (d1-d4) we can see the certified ESDF
region marked in green, and even as the robot moves around a significant part of the area
around the robot remains part of the safe region.
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Figure 4.8: Experimental domain used in Figure 4.9.
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Figure 4.9: Quantitative and qualitative analysis of the effect of the deflation on the volume
of the certified free space. (a) Compares the area of the claimed safe region on a 2D slice of
the ESDF extracted at the robot height. As a reference, the area of the FoV of the camera
is also drawn. (b) Compares the distance of the furthermost (claimed) free voxel from the
robot position. As a reference, the maximum depth of the depth sensor (8 m) is indicated. In
(c1-c4) we see snapshots of the map generated by the Baseline ESDF method, and in (d1-d4)
we see the corresponding snapshots from the Certified ESDF method. The accompanying
video animates the map slices and is therefore clearer.
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CHAPTER 5

Information Gathering and Perceivability

The previous chapters have developed architectures for safety critical control planning and
perception. At this point we consider carefully the interaction of the constrained controllers
with the mission-level objectives. As a canonical example, we consider the case of a team
of robots exploring an environment with the objective of collecting information. This infor-
mation can be useful either to satisfy the constraints directly, or simply part of the mission
objective.

In this chapter, we formalize the notion of information collection and try to understand
the connection between the robot, the environment and the information collected. At a
fundamental level, we seek to answer whether a robotic system even has the ability to acquire
certain information. For example, certain linear systems are not observable and some are not
controllable, so no matter the algorithm designed there simply will be no way to estimate
the state or control the system respectively. Here, we attempt to quantify a similar property
for information gathering, and we term it the perceivability of the environment.

To develop this notion, we must also introduce a metric of information, which we term
clarity. Clarity is equivalent to differential entropy, but has certain convenient properties for
the informative path planning problem. We have also used clarity and the clarity dynamics
of a Kalman Filter to effectively design multiagent dynamic coverage controllers.
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5.1 Clarity and Perceivability: Fundamental Limits of

Information Gathering

Robots are often deployed to explore unknown or unstructured environments, e.g., ocean
gliders collecting oceanographic data, or aerial robots searching for targets in a disaster
response. In this section, we establish two concepts: clarity and perceivability, to capture
information acquisition and their use in the design of informative controllers.

Informative Path Planning (IPP) seeks to design trajectories that maximize the ‘amount
of information’ collected subject to budgetary constraints such as total energy or time [79].
‘Information’ is measured in many ways, e.g. entropy/mutual information [43, 58, 121, 165],
Fisher Information [185], the number of unexplored cells/frontiers or the area of Voronoi par-
titions [42, 52, 86, 187], Gaussian Processes [112, 131], and data-informativity [166]. Various
techniques to solve IPP exist, including grid/graph-search or sampling [39, 43, 121, 175].
While useful for trajectory generation, such methods cannot quantify whether information
can be gathered in the first place.

The main objective is to answer the following questions: Given a platform (e.g., a robot)
with onboard sensors, and an environment in which information is to be collected, (1) does
the overall system have sufficient actuation and sensing capabilities to gather information in
a specified time, and (2) what are optimal control strategies to collect the information?

To address these, we first introduce clarity as a measure of the quality of information
possessed. Clarity about a random variable m, denoted q[m], lies in [0, 1], where q = 0

corresponds to the case where m is completely unknown, and q = 1 to the case where m
is perfectly known in an idealized (noise-free) setting. Clarity is inspired by differential
entropy, but compared to the latter it takes finite values with finite time derivatives. As a
first contribution, we show that if m is estimated using a Kalman Filter, the rate of change of
clarity has a similar structure to one assumed in dynamic coverage controllers [28, 77, 129].
This establishes certain optimality properties for dynamic coverage control, rather than being
viewed as a heuristic for exploration.

The second and primary contribution is the definition of perceivability, which quantifies the
maximum achievable clarity about the environment in a fixed time by a given system (robot
dynamics and sensory outputs). It depends on the controllability of the system describing the
robot dynamics, on the observability of the system describing the environment’s evolution.
This coupling makes perceivability distinct from standard notions of controllability (whether
the robot state can be driven to a desired state) or observability (whether the robot state
can be uniquely determined from sensory outputs).

We show that perceivability is linked to reachability analysis of an augmented system
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including both the robot’s system dynamics, and the environment’s clarity dynamics. We
show that perceivability can be determined by solving a Hamilton-Jacobi-Bellman (HJB)
equation, which allows us to determine optimal controllers, i.e., those that maximize the
quality of information acquired about an environment.

In Sec. 5.1.1 and 5.1.2 we introduce clarity and perceivability, respectively, and in
Sec. 5.1.3 we demonstrate these ideas. Background material is presented where needed.

5.1.1 Clarity

To aid the reader, we use the following running example, inspired by an oceanographic
mission: we wish to create a map of the ocean-surface temperature using sensors onboard a
surface vessel, or thermal images from an aerial vehicle, both subject to ocean currents or
winds. We require a suitable information metric: for this, we propose clarity.

5.1.1.1 Definitions and Fundamental Properties

Definition 5.1. [160, Ch. 8] X is a continuous random variable if its cumulative
distribution F (x) = Pr(X ≤ x) is continuous. The probability density function is
f(x) = F ′(x). The set where f(x) > 0 is the support set of X.

Differential entropy extends the notion of entropy [149] from discrete to continuous ran-
dom variables:

Definition 5.2. [160, Ch. 8] The differential entropy h[X] of a continuous random
variable X with density f(x) is

h[X] = −
∫
S

f(x) log f(x)dx (5.1)

where S is the support set of X.

While differential entropy shares many properties with discrete entropy [160, Sec. 2.1],
there are key differences. E.g., while discrete entropy is non-negative, differential entropy is
in [−∞,∞], i.e., it can be negative. We define clarity as:

Definition 5.3. Let X be a n-dimensional continuous random variable with differential
entropy h[X]. The clarity of X is

q[X] =

(
1 +

exp (2h[X])

(2πe)n

)−1

. (5.2)
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The normalizing factor (2πe)n is introduced to simplify some of the algebra, as in Theo-
rem 5.1 and the next example:

Example 5.1. Consider X ∼ U(a, b), and Y ∼ N (µ, P ), where a, b ∈ R, µ ∈ Rn, P ∈ Sn
+.

Then,

h[X] = log (b− a), h[Y ] = log
√

(2πe)n |P |,

q[X] =
1

1 + (b−a)2

2πe

, q[Y ] =
1

1 + |P |
.

Next, we establish some fundamental properties of clarity.

Property 5.1. For any n-dimensional continuous random variable X, A ∈ Rn×n, and
c ∈ Rn,

q[X] ∈ [0, 1] (clarity is bounded) (5.3)

q[X + c] = q[X] (clarity is shift-invariant) (5.4)

q[AX] ̸= q[X] (clarity is not scale-invariant) (5.5)

Proof. Of (5.3): Since h[X] ∈ [−∞,∞], q[X] = 1/(1 + s) for some s ∈ [0,∞], i.e., q[X] ∈
[0, 1].

Of (5.4), (5.5): Follows from [160, Th. 8.6.3] (h[X + c] = h[X]), and [160, Th. 8.6.4]
(h[AX] = h[X] + log |A|).

In information gathering tasks, we seek to design trajectories that minimize the estimation
error. Let X be a random variable of any distribution with clarity q[X]. Let X̂ be any
estimate of X, then E[(X − X̂)(X − X̂)T ] is the expected estimation error.1 Theorem 5.1
shows for expected estimation error to approach 0 it is necessary that clarity approach 1.

Theorem 5.1. For any n-dimensional continuous random variable X and any X̂ ∈ Rn, the
determinant of the expected estimation error is lower-bounded as∣∣∣E[(X − X̂)(X − X̂)T ]

∣∣∣ ≥ 1

q[X]
− 1, (5.6)

with equality if and only if X is Gaussian and X̂ = E[X].
1This is the covariance of X only if X̂ is the mean of X. Since we do not make this assumption, we refer

to this quantity as the expected estimation error.
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Proof. Following the same arguments as in [160, Th. 8.6.6],∣∣∣E[(X − X̂)(X − X̂)T ]
∣∣∣ ≥ min

X̂∈Rn

∣∣∣E[(X − X̂)(X − X̂)T ]
∣∣∣

=
∣∣E[(X − E[X])(X − E[X])T ]

∣∣
= |var(X)|

and since a Guassian distribution has the greatest entropy of a given variance [160, Th.
8.6.6],

∣∣∣E[(X − X̂)(X − X̂)T ]
∣∣∣ ≥ e2h[X]

(2πe)n
=

1

q[X]
− 1.

Corollary 5.2. For any 1-D continuous random variable x and any x̂ ∈ R, the expected
estimation error is lower-bounded as

E[(x− x̂)2] ≥ 1

q[x]
− 1 (5.7)

with equality if and only if x is Gaussian and x̂ = E[x].

Proof. Use Thm. 5.1 with P ∈ S1
++ =⇒ |P | = P .

Remark 5.1. Although there is a one-to-one mapping between clarity and differential en-
tropy (5.2), the primary benefits of clarity are: (I) clarity is bounded over [0, 1] instead of
[−∞,∞], (II) the time derivatives, defined later in (5.12), are finite for all q ∈ [0, 1]. This is
particularly important for perceivability, since numerical methods to solve the HJB equation,
defined later in (5.20), require bounded values and derivatives.

5.1.1.2 Connection between Clarity and Coverage Control

Consider the system

ẋ = f(x, u) (5.8)

where the state is x ∈ X ⊂ Rn, control input is u ∈ U ⊂ Rm.
The objective in coverage control is to design a controller π : X → U for the system (5.8)

such that closed-loop trajectories gather information over a domain D ⊂ X . As in [77],
let c = c(t, p) denote the ‘coverage level’ about a point p ∈ D at time t. [77] assumes the
coverage increases through a sensing function S : X × D → R≥0 (positive when p can be
sensed from x, and 0 else), and coverage decreases at a rate α : D → R≥0. This results in
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the model

ċ = S(x, p)(1− c)− α(p)c. (5.9)

In [28, 129] the α term is ignored, and a point p is said to be ‘covered’ if c(t, p) reaches a
threshold c∗.

However, given specifications on the robot, sensors, and the environment, it is not clear
how to systematically define S, α, c∗. [28, 77, 129] resort to heuristic methods.

In many practical scenarios, measurements are assimilated using a Kalman Filter. In
principle, the coverage dynamics should reflect the information gathering mechanism, i.e.,
the evolution of the quality of information about the environment as it is estimated using
the Kalman Filter. In deriving the clarity dynamics, (see (5.12)), we notice similarities
with (5.9).

Consider the simplest scenario, where we want to estimate a scalar variable m ∈ R. We
assume m is a stochastic process:

ṁ = w(t), w(t) ∼ N (0, Q), (5.10)

y = C(x)m+ v(t), v(t) ∼ N (0, R(x)), (5.11)

where y ∈ R is the measurement. Notice C(x), R(x) are robot-state dependent, emphasizing
that the quality of the measurements can depend on the robot’s state. For simplicity, assume
x is known. The following demonstrates the setup:

Example 5.2. Let x be the quadrotor’s state, with position xpos ∈ R2 and altitude xalt. The
quadrotor uses a downward facing thermal camera with half-cone angle θ to measure the
ocean’s temperature m at a location p. Then C(x) is

C(x) =

1, if ∥xpos − p∥ ≤ xalt tan θ,

0, else

and, if the measurement variance is state-independent, R(x) = R. The ocean temperature
can change stochastically by (5.10).

Notice that the subsystem (5.10), (5.11) satisfies the assumptions of linear-time varying
Kalman Filters [70, Ch. 4], since for any given trajectory x(t), the measurement model is
equivalent to y = C(t)m+v(t), where C(t) = C(x(t)) by slight abuse of notation. Therefore,
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the estimate has distribution N (µ, P ), where µ, P evolve according to:

µ̇ = PC(x)R(x)−1(y − C(x)µ), Ṗ = Q− C(x)2

R(x)
P 2.

Since the clarity of a scalar Gaussian is q = 1/(1 + P ),

q̇ =
∂q

∂P
Ṗ =

−Ṗ
(1 + P )2

=
−1

(1 + P )2

(
Q− C(x)2

R(x)
P 2

)
and therefore the clarity dynamics are

q̇ =
C(x)2

R(x)
(1− q)2 −Qq2. (5.12)

Remark 5.2. Comparing (5.9) with (5.12), one may note that their structure is remarkably
similar. Clarity/coverage increase due to the first term, and decrease due to the second.
However, (5.12) is nonlinear wrt q. Thus, although (5.9) has the right intuitive character-
istics to describe ‘coverage’, (5.12) has the correct dynamics corresponding to information
gathering.

Eq. (5.12) yields further insight. Clarity decays at a rate −Qq2, i.e., due to the environ-
ment stochasticity. As clarity increases, the rate of increase of clarity, C(x)2(1 − q)2/R(x),
decreases: additional measurements have diminishing value.

Although nonlinear, (5.12) has closed-form solutions, since it is a scalar differential Riccati
equation [82, Sec. 2.15]. For constant C(x) = C,R(x) = R, if C,R,Q > 0,

q(t) = q∞

(
1 +

2γ1
γ2 + γ3e2kQt

)
, (5.13)

where k = C/
√
QR, q∞ = k/(k + 1), γ1 = q∞ − q0, γ2 = γ1(k − 1), γ3 = (k − 1)q0 − k.

As t → ∞, clarity monotonically approaches q∞ < 1: if m is stochastic with non-zero
variance, and measurements have non-zero variance, perfect clarity (q = 1) is impossible.

Theorem 5.3. Let m ∈ Rnm be the environment state vector, and y ∈ Rq be the sensed
outputs. Suppose the environment and measurement models are

ṁ = Am+ w(t) w(t) ∼ N (0, Q) (5.14a)

y = C(x)m+ v(t) v(t) ∼ N (0, R(x)) (5.14b)

with Q ∈ Snm
++, and R : X → Sq

++. Assuming P (t) ∈ Snm
++ for all t (see [91, Sec. 11.2]) and
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a prior m ∼ N (µ, P ), then

Ṗ = AP + PAT +Q− PC(x)TR(x)−1C(x)P (5.15)

q̇ = q(1− q)
(
tr (C(x)TR−1C(x)P )− tr (2A+ P−1Q)

)
. (5.16)

Proof. Eq. (5.15) is the standard covariance update for the Kalman Filter. To derive (5.16),
notice the clarity of a multivariate Gaussian is q = 1/(1 + |P |). Therefore,

q̇ = − 1

(1 + |P |)2
d

dt
(|P |)

Since P ∈ Snm
++, it is invertible. Using Jacobi’s formula:

q̇ =
− |P | tr (P−1Ṗ )

(1 + |P |)2
= q(1− q) tr (−P−1Ṗ )

since |P | /(1+|P |)2 = q(1−q). Substituting in (5.15), and simplifying, we arrive at (5.16).

Again, we see the same structure: clarity increases at a rate tr (C(x)TR(x)−1C(x)P ),
and decreases at a rate tr (P−1Q). Furthermore, since (5.15, 5.16) are independent of y, for
trajectory planning we can use the deterministic and fully known

Ẋ = f̃(X, u), q̇ = g(X, q), (5.17)

where X = [xT , vec(P )T ]T is an extended state.

5.1.2 Perceivability

In this section, we introduce the concept of perceivability : given a robot with certain sensing
and actuation capabilities, can the robot’s motion over a finite time achieve a desired level
of clarity with the collected sensory data? Formally,

Definition 5.4. A quantity m ∈ R that evolves according to (5.10) is perceivable by the
system (5.8, 5.11) with clarity dynamics2 g : X × [0, 1] → R, to a level q∗ ∈ [0, 1] at time T
from an initial state x0 ∈ X and clarity q0 ∈ [0, 1], if there exists a controller π : [0, T ] → U
s.t. the solution to [

ẋ

q̇

]
=

[
f(x, π(t))

g(x, q)

]
,

[
x(0)

q(0)

]
=

[
x0

q0

]
(5.18)

2When using a Kalman Filter to estimate m, g is as in (5.12). In general, other estimators could be used,
and will lead to different expressions for g.
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satisfies q(T ) ≥ q∗.

We define the set of initial conditions from which m is perceivable as the perceivability
domain:

Definition 5.5. The (q∗, T )-Perceivability Domain of a quantity m ∈ R (that evolves
according to (5.10)) by the system (5.8, 5.11) is the set of initial states x0 and initial clarities
q0 such that m is perceivable to a level q∗ at time T :

D(q∗, T ) =
{
(x0, q0) : ∃π : [0, T ] → U ,

ẋ = f(x, π(t)), q̇ = g(x, q),

x(0) = x0, q(0) = q0, q(T ) ≥ q∗
}
. (5.19)

Our key insight is that perceivability is fundamentally a question of the reachability of
the augmented system (5.18). As with backward reachable sets, the perceivability domain
can be determined by a Hamilton-Jacobi-Bellman (HJB) equation:

Theorem 5.4. Let V : [0, T ]×X × [0, 1] → R be the viscosity solution of

∂V

∂t
+max

u∈U

(
∂V

∂x
f(x, u)

)
+
∂V

∂q
g(x, q) = 0, (5.20a)

V (T, x, q) = q ∀x ∈ X , q ∈ [0, 1]. (5.20b)

Then the (q∗, T )- perceivability domain of m ∈ R (that evolves according to (5.10)) by the
system (5.8, 5.11) is

D(q∗, T ) =
{
[xT0 , q]

T : V (0, x0, q0) ≥ q∗
}
. (5.21)

Proof. Let L([t, T ],U) be the set of piecewise continuous functions π : [t, T ] → U . Define V
as the maximum clarity reachable from (t, x, q):

V (t, x(t), q(t)) = max
π∈L([t,T ],U)

q(T ) s.t. (5.18)

By the principle of dynamic programming, for any δ > 0,

V (t, x(t), q(t)) = max
π∈L([t,t+δ],U)

V (t+ δ, x(t+ δ), q(t+ δ))
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Using a Taylor expansion about δ = 0, as δ → 0,

V (t, x(t), q(t)) = max
u∈U

(
V (t, x(t), q(t)) +

∂V

∂t
δ

+
∂V

∂x
f(x, u)δ +

∂V

∂q
g(x, q)δ

)
which simplifies to (5.20).

After solving V , the optimal controller is [40, Ch. 4.2]

π(t, x, q) = argmax
u∈U

(
∂V

∂x
f(x, u)

)
(5.22)

5.1.3 Simulations and Applications

Code and videos are available at https://github.com/dev10110/

Clarity-and-Perceivability.

5.1.3.1 Energy-Aware Information Gathering

This example demonstrates the diminishing value of measurements. Consider the quadrotor
tasked with measuring ocean temperature. It must fly to a target location, spend T seconds
collecting information, and fly back. As T increases, more measurements are made and hence
greater clarity is achieved, but at an energy cost. We wish to optimize T to maximize clarity
and minimize energy. We model the energy cost as E(t) = p0 + p1T , where p0 is the energy
cost of flying to and back from the target, p1 is the hovering power draw.

The pareto front of q(T ) against E(T ) is depicted in Fig. 5.1. The diminishing value of
measurements is clearly visible, as between T ∈ [160, 320] s, the clarity only increases by
2.6%, but increases by 49.7% for t ∈ [10, 20] s. To maximize the clarity/energy ratio, the
quadrotor should collect measurements for T ∗ = 57.4 seconds (green tangent).

5.1.3.2 Coverage Control based on Clarity

Next, we demonstrate how clarity can be used in ergodic coverage controller of [115]. The
robot is exploring a unit square, but certain regions have a greater target clarity than others,
as labelled in Fig. 5.2a. The challenge with ergodic controllers is defining the fraction of time
spent at each position p, and uniform allocation is often used as a heuristic. Since the target
clarity has been specified, we can invert (5.13) to determine the appropriate time allocation.

Fig. 5.2 compares the behaviour of three coverage controllers: (A) a greedy controller
hovers at the point p with maximum (qT (p) − q(t, p)) until qT is reached, (B) the ergodic
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Figure 5.1: Clarity gained as a function of the measurement time. First, the clarity increases
rapidly. As the level of clarity approaches q∞ (red dashed line), the rate of clarity accumu-
lation decreases. The maximum clarity/energy ratio is (green dashed line) is achieved at
T ∗ = 57.4 s. Parameters: R = 20.0, Q = 0.001, p0 = 36 kJ, p1 = 0.2 kW.

controller in [115] with a uniform target distribution, and (C) the same ergodic controller
but with a target distribution based on clarity. The proposed method (C) brings the mean of
(q(t, p)− qT (p)) to 0 rapidly, and does not overshoot like controller B. Beyond t = 35, q(t, p)
increases further since the robot continues to explore despite most cells having reached the
target clarity.

5.1.3.3 Perceivability and Optimal Trajectory Generation

Here we demonstrate how perceivability can be determined using (5.20). Consider a boat
tasked with collecting information that can only be measured from the green region in
Fig. 5.3b. To highlight the importance of actuation capabilities on perceivability, we consider
two models, a single integrator:

ẋ1 = u1 + wx(x), ẋ2 = u2 + wy(x)

with u1, u2 ∈ [−2, 2] m/s, and a Dubins Boat:

ẋ1 = v cosx3 + wx(x), ẋ2 = v sinx3 + wy(x), ẋ3 = u
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Figure 5.2: Coverage Controllers. (a-c) Snapshots of three controllers exploring a square
region. The target clarity qT (p) is different in different regions as labelled in (a). (d) Plot
of the mean(q(t, p) − qT (p)) against t for each controller. Notice that using the proposed
method, the mean clarity error is close to 0 for t ∈ [20 − 35] seconds, and only increases
later, when the entire region has higher clarity than the targets specified.

where v = 2 m/s, and u ∈ [−1, 1] rad/s. For both, the sensing model is as in (5.12), with
C(x) = 1 when x is in the green square and 0 elsewhere, R(x) = 1.0, Q = 0.001. The ocean
current is wx(x) = max(0, 3x2), wy(x) = −0.5 m/s. Thus, neither vehicle has sufficient
control authority to remain within the sensing range indefinitely.

To determine the perceivability domain, the backwards reachability set of (5.18) is com-
puted using [25, 120] (Fig. 5.3a). The optimal controller (5.22) drives both vehicles from
the same initial condition (Fig. 5.3b). Due to the current, both vehicles need to do loops
to acquire clarity. The single integrator (Fig. 5.3c) is able to reach q(T ) ≥ q∗, while Dubins
boat is not. Despite having the same sensing capabilities, the perceivability is different due
to different actuation capabilities.

Computing the 10-second perceivability domain took 450 seconds on a Macboook Pro
(i9, 2.3GHz, 16GB). While prohibitively slow for online applications, V can be precomputed
offline. Future work will explore faster trajectory design techniques, akin to RIG [79], or
CBFs, as demonstrated next.

5.1.3.4 CBF-based Trajectory Generation

Here we demonstrate how Lyapunov methods can be used to efficiently design controllers
that maintain an information constraint, avoiding the need to numerically solve the HJB
equation. Consider a 6D planar quadrotor system [5],

ẍ1 = u1 sinx3/m, ẍ2 = u1 cosx3/m− g, ẍ3 = u2/J
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Figure 5.3: Perceivability and Optimal Trajectories. (a) The (q∗, T )-Perceivability Domain
(states above blue surface) for single integrator using q∗ = 0.7, T = 10.0 sec. (b) Optimal
trajectories for the single integrator (orange) and the Dubins boat (blue) from the same
initial conditions. The heading of Dubins boat is shown with blue arrows. Due to the high
ocean currents in the sensing region, both vehicles make multiple passes through the sensing
region to accumulate clarity. (c) Plot of clarity against time for both vehicles. Since the
single integrator is more maneuverable than the Dubins boat, the environment is perceivable
to a level 0.7 in time 10 seconds for the single integrator but not for the Dubin’s boat.

where x1, x2 is the position of the quadrotor in the vertical plane, and x3 is the pitch angle.
m, g, J are the mass, acceleration due to gravity, and moment of inertia. The quadrotor
is attempting a precision landing, using onboard sensors to determine the landing spot xf .
Given an estimate x̂f , an optimal control problem (OCP) can be solved to reach x̂f . However,
since x̂f is estimated online, we must ensure x̂f is accurate before approaching it. This can
be encoded as σ ≤ x2/2, which ensures that σ, the standard deviation of the estimated
landing site is less than half the altitude, x2. A constrained OCP can be defined, but is
numerically difficult to solve since there are 7 state and 2 input dimensions.3

Instead, Lyapunov methods can be used to maintain the constraint. Using σ2 = 1/q − 1,
the safe set is

S = {[xT , q]T : h(x, q) = q − 4/(4 + x22) ≥ 0}

where h is a CBF of relative degree 2 [21]. Fig. 5.4 compares the trajectories with and
without the CBF-QP controller [176]. With the CBF-QP controller the quadrotor slows
down to ensure high quality of information. Each iteration of the controller takes about
1 ms, significantly faster than HJB methods. This illustrates that by framing problems of
information-based control using clarity/perceivability, Lyapunov methods can be used to
design controllers to maximize (or in this case maintain) the quality of information gathered

3It took 480 s to compute the 0.05 s horizon value function on a coarse grid. Over a finer grid, the RAM
usage exceeded 60GB and MATLAB crashed.
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Figure 5.4: Precision landing of a planar quadrotor. (a) In the nominal controller, the quad
descends rapidly and misses the target. (b) Using the clarity based CBF-QP controller, the
quad descends slowly. (c) Plot of h against t, showing the CBF-QP keeps the system safe.

by a system.

5.1.4 Conclusion

The primary purpose of this section is to introduce perceivability, the ability of a robotic
system to obtain information about the environment contingent on its actuation capabili-
ties, its sensing capabilities, the environment’s dynamics. As a metric for information, we
introduce clarity, a bounded rescaling of differential entropy that takes values in [0, 1]. We
have shown how perceivability is linked to a reachability problem of an augmented state, and
through HJB equations, simultaneously determine a system’s perceivability and the optimal
control policy to maximize the final clarity. By using clarity, the HJB-based algorithms can
be evaluated numerically, since (A) the range of the information state is bounded, and (B)
the clarity dynamics have finite derivative. In the simulations, we demonstrate other ways
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that the clarity and perceivability can be used, from minimizing the energy cost, or designing
CBF-QP controllers to maintain a desired level of information.

Here, we considered stochastic environments and measurement models, but deterministic
robot dynamics. The important case of stochastic robot dynamics will be studied in the
future. We also intend to investigate a potential connection with data-informativity [166]:
perhaps data-informative trajectories can be designed using perceivability, to improve data-
driven system identification.
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5.2 Controllers for Multiagent Information Gathering

A standard robotic mission is the collection of information that varies both in time and
space over a domain of interest. To collect such information optimally, a (team of) robot(s)
must reason about the currently available information, the target level of confidence in the
information sought, the spatiotemporal evolution of the underlying information, and the
robot’s sensing capabilities, and (in the case of a team) coordinate the actions of each robot.

The design of informative path planners and dynamic coverage controllers has long been
of interest [27, 106, 127], with a variety of techniques proposed including Voronoi partition-
ing [52], sampling approaches [39, 121], grid/graph based approaches [43, 175] and ergodic
search [60, 115].

Here, we define the informative path planning or coverage control problem as follows:
we have a team of robots that, at a fixed sampling frequency, measure the spatiotemporal
environment at their respective positions. Using these measurements, we update our estimate
of the state of the environment (referred to as information assimilation), while simultaneously
controlling the robots position to determine the next location from which a measurement
should be taken (referred to as the coverage controller). As such, the goal is to design a
controller and information assimilation algorithm that efficiently reduce the uncertainty of
the estimate of the state of the environment.

We quantify the uncertainty of a stochastic variable using an information-theoretic metric
clarity, introduced in [6]. In particular, as the uncertainty of the stochastic variable decreases,
(i.e., its differential entropy approaches −∞), the clarity of the random variable approaches 1.
Similarly, as the uncertainty increases, the clarity approaches zero.

We model the environment as a spatiotemporal field f(t, p), i.e., a scalar function that
varies in time and space; as an example, if the goal is to estimate the windspeed over a spatial
and temporal domain, f(t, p) represents the windspeed at any given time t and position p.
The estimate is a function f̂(t, p) for each t, p, with an associated clarity q(t, p) at each t, p.
Numerically the state of the environment is a vector representing f̂(t, p) at a set of grid
points. By taking (noisy) measurements of f using the robots at their respective locations,
we can improve our estimate f̂ and increase its clarity (i.e., reduce the uncertainty). At the
same time, due to the time-varying nature of f , the clarity of f̂ decreases for all points not
being measured. This balance of information gain and decay will be an important element
in designing the algorithms.

A key limitation of many of the methods listed above is that simplified heuristics are
used to motivate the cost functions used in the informative path planners. For example,
the ergodic search approaches assume that a Target Spatial Distribution (TSD) (defined as
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the desired percentage of time that the robot should spend at any position in the domain)
is provided by the user. However, there has been less work on how one can obtain such a
target distribution in a principled manner taking into account the sensing capabilities of the
robot or the temporal evolution of the state of the environment.

The goal of this section is to demonstrate how the cost function in informative path plan-
ning can be designed in a principled manner based on the assumed model of the environment.
In particular, when estimating a spatiotemporal field, a common practice is to model it as
a realization of a GP [171], and use the robot’s measurements to update the estimate of the
state of environment.

Here, we use the connection between GPs and Stochastic Differential Equations
(SDEs) [44, 96, 145] to analyze the information-gathering capabilities of the robots: given
the robot’s take measurements at their respective locations, how much does the uncertainty
in our estimate of state of the environment reduce? We answer this by quantifying a robot’s
sensing function and the environment’s information decay function. For a point p in the
domain, the sensing function defines the rate of increase of clarity at p due to measurements
from a robot at position r. The decay function quantifies the rate of decrease of clarity due
to the time-varying nature of f(t, p). We use these functions to design coverage controllers
that respect the rate of change of clarity when designing trajectories.

We make three main contributions: (A) We use clarity [6] to quantify the rate of change
of uncertainty at a position p due to measurements made by a robot at a (possibly different)
position r. Integrated over the mission domain, this quantifies the value of the robot being
at position r. (B) We use this relation to propose two coverage controllers. (C) Being
feedback controllers, we show how they scale naturally to the multi-agent setting. Finally,
we demonstrate the algorithms using a realistic simulation, where a team of aerial robots
explore a region of Austria, and estimate the wind speed over this region.

The two coverage algorithms proposed bear resemblance to the controllers in [27]
and [126]. The first, referred to as the direct controller, directly chooses a control input
to maximize the clarity of the state of the environment. The second, referred to as the
indirect controller, computes a TSD based on the time required to increase the clarity to a
given target value.

5.2.1 Preliminaries

We consider a problem with NR robots, exploring a d-dimensional domain D ⊂ Rd. Each
robot has a state in X ⊂ Rn, n ≥ d. The state of the environment will be represented
numerically at a set of NG grid points.
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5.2.1.1 Clarity

The information metric clarity was introduced in [6] and is based on differential entropy:

Definition 5.6. [160, Ch. 8] The differential entropy h[X] ∈ (−∞,∞) of a continuous
random variable X with support S and density ρ : S → R is

h[X] = −
∫
S

ρ(x) log ρ(x)dx. (5.23)

Notice that as the uncertainty in X decreases, the entropy approaches h[X] → −∞.
Clarity is defined in terms of differential entropy.

Definition 5.7. Let X be a n-dimensional continuous random variable with differential
entropy h[X]. The clarity q[X] ∈ (0, 1) of X is defined as:

q[X] =

(
1 +

exp (2h[X])

(2πe)n

)−1

. (5.24)

In other words, the clarity q[X] about a random variable X lies in (0, 1), where q → 0

corresponds to the case where the uncertainty in X is infinite, and if X is perfectly known
in an idealized (noise-free) setting, q[X] = 1. For a scalar Gaussian random variable X ∼
N (µ, σ2), the clarity is q[X] = 1/(1 + σ2).

In an estimation context, we use clarity to quantify the quality of our estimate: as the
clarity increases towards 1, the uncertainty of our estimate decreases towards 0. In [6] it was
shown that when X is estimated using a Kalman filter, the clarity dynamics of the estimate
of X can be obtained in closed form.

5.2.1.2 Gaussian Processes

A GP [171, Ch. 2] is a (scalar) stochastic process that is fully defined by the mean function
m : D → R and a kernel k : D ×D → R:

f(p) ∼ GP(m(p), k(p, p′)), (5.25)

where m and k are defined as

m(p) = E[f(p)], (5.26a)

k(p, p′) = E[(f(p)−m(p))(f(p′)−m(p′))]. (5.26b)
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Given a set of N measurements {yk}Nk=1 taken at positions {pk}Nk=1, we can update our
posterior estimate of f , as described in [171, Ch. 2].

For two set of points PA = {ai}Ni=1 and PB = {bi}Mi=1, the kernel matrix KAB ∈ RN×M is
the matrix such that [KAB](i,j) = k(ai, bj).

5.2.1.3 Spatiotemporal Gaussian Processes

The goal is to estimate a spatiotemporal field, i.e., to estimate a function f(t, p), f : R×D →
R using measurements obtained by robots.4 Here t ∈ R denotes time, and D ⊂ Rd is spatial
domain of interest. The measurements (defined in (5.35)) are noisy measurements of f at a
fixed sampling period from each robot’s position at the sampling time.

While a standard GP can directly handle the spatiotemporal case, we can achieve signif-
icant computational efficiency by explicitly separating the spatial and temporal dimensions
and exploiting the equivalence between spatiotemporal GPs and SDEs. Effectively, we can
convert a Bayesian inference problem into a Kalman Filtering problem, thereby reducing
memory and computational cost. We assume the following:

Assumption 5.1. Suppose the spatiotemporal field f : R × D → R is a realization of a
zero-mean GP:

f(t, p) ∼ GP(0, k(t, p, t′, p′)), (5.27)

k(t, p, t′, p′) = kT(t, t
′)kS(p, p

′), (5.28)

where the kernel is separable in space and time, and the temporal kernel is isotropic, i.e.,
kT(t, t

′) only depends on |t′ − t|.

Under Assumption 5.1, it is known that realizations of a GP are also realizations of a
SDE [44]. This fact is derived through the Wiener-Khinchin theorem [146, Ch. 12], and in
the interest of space, the readers are referred to [44] or [7, Appendix] for full derivations.

The key idea is that if h(t) ∼ GP(0, kT(t, t
′)) is a realization of a (temporal) GP, it is

equal to the output of a transfer function applied to a realization of a white noise process.
By expressing the transfer function in state-space form, we arrive at a SDE such that a
realization of the SDE is equal to h.

In the spatiotemporal case, let PG = {pi}NG
i=1 ⊂ D be a set of NG (possibly non-uniform)

grid points over the spatial domain. Let f(t) ∈ RNG be a vector such that the i-th entry is
the value of the spatiotemporal field at the i-th grid point, [f(t)]i = f(t, pi). Then, the SDE

4For simplicity of exposition, we assume the spatiotemporal field has scalar outputs. For multidimensional
outputs, we repeat for each dimension independently.
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for the system comprises of NG independent stochastic processes (5.29a), that get spatially
correlated based on the spatial kernel (5.29b). Mathematically,

dsi(t) = Asi(t)dt+BdWi(t)

zi(t) = Csi(t)

si(0) ∼ N (0,Σ)

, (5.29a)

f(t) =
√

KGGz(t) =
√
KGG(ING

⊗ C)s, (5.29b)

Here si(t) ∈ Rnk is a state at each grid point.5 s =
[
sT1 · · · sTG

]T
∈ RnkNG is a stacked

vector representing the state of the entire environment; f(t) =
[
f(t, p1) · · · f(t, pG)

]T
∈

RNG is a stacked vector comprising the value of the field at each grid point; Wi is a standard
Wiener process, independent for each grid point. The matrices A ∈ Rnk×nk , B ∈ Rnk×1,
C ∈ Rnk×l are constant matrices that only depend on the temporal kernel kT. Σ ∈ Snk

++ is
the matrix that solves AΣ + ΣAT = −BBT . KGG ∈ SG

++ is the spatial kernel matrix, i.e.,
[KGG]ij = kS(pi, pj).

Example 5.3. The Matern-1/2 temporal kernel is kT(t, t′) = σ2
t exp (−λt |t− t′|) for hyperpa-

rameters λt, σt > 0. The state-space model has dimension nk = 1, and matrices A =
[
−λt

]
,

B =
[
1
]
, C =

[√
2λtσt

]
. Derivations and expressions for Matern-3/2 and Matern-5/2

kernels can be found in [7, Appendix].

5.2.1.4 Ergodic Control

Ergodic control [60, 115] is a technique to generate robot trajectories that cover a domain
D = [0, L1]×· · ·×[0, Ld] ⊂ Rd, such that the trajectories have a spatial (position) distribution
that closely matches a specified TSD, as explained below.

The TSD is a function ϕ : D → R such that the ϕ(p) denotes the desired time a robot
should spend at position p. Given a robot’s (position) trajectory ξ : [0, T ] → D the trajec-
tory’s spatial distribution is defined as cξ : D → R, where for any p ∈ D

cξ(p) =
1

T

∫ T

0

δ(p− ξ(τ)))dτ. (5.30)

Here δ : Rd → R is the Dirac delta function.
The ergodicity E > 0 of a trajectory ξ measures the difference between the robot trajec-
5nk depends on the temporal kernel. For the Matern 1/2, 3/2, and 5/2 kernels, nk = 1, 2, 3 respectively.
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tory’s spatial distribution and the target spatial distribution:

E = ∥cξ − ϕ∥2H−s (5.31)

where ∥·∥H−s is the Sobolev space norm of order s = (d+ 1)/2, defined in [115]:

∥cξ − ϕ∥2H−s =
∑
l∈Nd

Λl(ĉl − ϕ̂l)
2 (5.32)

where Λl ∈ R is a weighting coefficient, and (̂·)l is the l-th element of the Discrete Cosine
Transform (DCT) of the function (·), e.g.

ϕ̂l = ⟨ϕl, bl⟩ =
∫
p∈D

ϕl(p)bl(p)dp (5.33)

where bl : D → R is the l-th basis function. We refer the reader to [115] for further details.
E is a function-space norm measuring the difference between the TSD and the spatial

distribution of the trajectory. The key benefit of the Sobolev norm is that it prioritizes match-
ing the low spatial frequency differences between c and ϕ before matching the high spatial
frequencies. This means that the controllers have a multiscale-spectral nature, where they
prioritize covering the domain globally, before returning to the gaps and covering them [115].

In [115] a feedback controller is derived for single and double-integrator robot models that
minimizes the ergodicity. Various extensions have been presented in, for example, [59, 60]
to address other robot models and other goals.

5.2.2 Problem Statement

Consider a team of NR > 0 robots, each with dynamics

ẋi = F (xi) +G(xi)ui, (5.34)

where xi ∈ X ⊂ Rn is the i-th robot’s state, and ui ∈ U ⊂ Rm is its control input. The
position of each robot is ri = Φ(xi) ∈ Rd, i.e., Φ : X → D extracts the position.

Each robot makes measurements of the spatiotemporal field at a fixed sampling period
∆T > 0,

yk,i = f(tk,Φ(xi(tk))) + wk,i, (5.35a)

wk,i ∼ N (0, σ2
m), (5.35b)
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that is, yk,i ∈ R is a scalar measurement output by the i-th robot at the k-th timestep,
tk = k∆T . Each measurement is perturbed by zero-mean Gaussian noise with standard
deviation σm.

We assume each robot determines its control inputs, but that the information from each
robot is assimilated centrally. We assume the robots can always communicate with the
central agent, sending the measurements and receiving a map of the current clarity at each
p ∈ D.

Problem 5.1. Consider a team of NR > 0 robots, each with dynamics (5.34) and measure-
ments (5.35), exploring a domain D. Let f : R × D → R be a spatiotemporal field to be
estimated satisfying Assumption 5.1. Design a coverage control algorithm for each robot,
and an estimation algorithm to fuse measurements yk into an estimate of f .

The mathematical form of the coverage objective is delayed until Section 5.2.4. The
estimator will be the optimal estimator in a least-squares sense, discussed in Section 5.2.3.

In addressing Problem 5.1, we address two questions: (A) how does the information
assimilation algorithm inform the value of taking measurements at a robot position x ∈ D
on the quality of information at a different position p ∈ D, and (B) how should one design
coverage controllers to exploit that relationship? Since the mission is a multi-agent coverage
problem, we also need to ensure that the proposed coverage algorithms are scalable with the
number of robots. We address these two questions in the following sections.

5.2.3 Information Assimilation

In this section, we discuss how the GP model (Assumption 5.1) determines two functions:
(A) the information decay rate at each p ∈ D, and (B) the information gain rate at each
p ∈ D due to measurements taken from a robot’s position ri = Φ(xi) ∈ D. We consider
the hyperparameters of the GP to be specified and constant, although some strategies for
estimating these are discussed in the simulation section.

5.2.3.1 Kalman Filter Model

First, we show that the Kalman Filter (KF) is the optimal state estimator to estimate the
spatiotemporal field f . As shown in Section 5.2.1.3, the process model for f sampled at NG

grid points is a linear stochastic differential equation with state s ∈ RnkNG . We now show
that the measurements (5.35) are a linear function of s.6

6In [44], the measurements must be taken at one of the grid points. Here we extend the result to allow
measurements at non-grid points.
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ConsiderNR robots at positions PR = {Φ(xi)}Nr
i=1 where each robot makes a measurements

yk,i as in (5.35). However, the state s corresponds to the grid points PG, not necessarily
coinciding with the measurement locations PR. To account for this, we use spatial correlation
based on the Gaussian Process model for f :[

f(tk)

yk

]
∼ N

(
0,

[
KGG KGR

KRG KRR + σ2
mI

])
(5.36)

where KGG,KGR,KRG,KRR are the kernel matrices for the sets of points PG, PR, and yk =[
yk,1 · · · yk,NR

]T
.

Using (5.29b), yk conditioned on the state s(tk) is

yk|s(tk) ∼ N (Hs(tk), V ), (5.37a)

H = KRGK
−1
GG

√
KGG(ING

⊗ C) (5.37b)

V = σ2
mINR

+ KRR − KRGK
−1
GGKGR. (5.37c)

Therefore, the environment’s state space model is a linear (continuous time) process
(recall (5.29a)) with linear (discrete-time) measurements:

ds = (ING
⊗ A)sdt+ (ING

⊗B)dW, (5.38a)

yk = Hs(tk) + vk (5.38b)

where W is a NG-dimensional standard Wiener process, and vk ∼ N (0, V ). Notice that
although each measurement has noise variance σ2

mI, the noise model in (5.38b) has V ≥ σ2
mI

accounting for the fact that measurements can be taken at non-grid points.
To summarize, we have a linear, time-invariance process model (5.38a), with a linear

(but time-varying due to the changing measurement locations) measurement model (5.38b).
Together, they satisfy the assumptions of the KF, and therefore the KF is the optimal
estimator for this system [70].

5.2.3.2 Quantifying Information Gain and Decay Rates

Next, we wish to characterize the clarity dynamics, i.e., the rate of information gain and
decay. In this section, we focus on the clarity dynamics of a single point p ∈ D due to a
measurement taken by a robot with position r = Φ(x) ∈ D. Since we use the KF to assimilate
measurements, we use the earlier derived dynamics to estimate the rate of information gain.
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Reducing (5.38) for a single point p, the continuous time KF model is

ṡ = As+Bw, w(t) ∼ N (0, I), (5.39a)

y = Ls+ v, v(t) ∼ N (0, V∆T ) (5.39b)

where s ∈ Rnk is the state of the spatiotemporal process at p, r = Φ(x) is the robot’s
position, and

L =
kS(r, p)√
kS(p, p)

C, V = σ2
m + kS(r, r)−

kS(r, p)
2

kS(p, p)
.

Let the KF state consist of (ŝ,Σ), the mean and covariance. Then, the covariance has
dynamics

Σ̇ = AΣ + ΣAT +BBT − ΣLT (V∆t)−1LΣ. (5.40)

Therefore, the estimate of f(t, p) is N (f̂ ,Π), where f̂ = Cŝ, and Π = CΣCT . Since, the
clarity of a scalar Gaussian variable is q = 1/(1 + Π), the clarity dynamics are

q̇ =
dq

dΠ
Π̇ = −q2CΣ̇CT . (5.41)

Depending on the temporal kernel,7 this simplifies to

q̇ = S(x, p)(1− q)2︸ ︷︷ ︸
clarity gain

− D(p, q)︸ ︷︷ ︸
clarity decay

(5.42)

where the first term defines the rate of clarity gain at p due to measurements taken at
r = Φ(x), while the second term defines the clarity decay rate.

Remark 5.3. Eq. (5.42) is one of our main results: the function S : X × D → R is the
sensing function that quantifies the importance of a measurement taken from robot state
x ∈ X on the clarity of our estimate at a position p ∈ D. Similarly, D : D×R → R defines
the rate at which clarity about f(t, p) decays due to the spatiotemporal nature of f . Notice
the decay rate is uncontrolled, i.e., does not depend on the robot’s state x.

7In particular, this holds for Matern-1/2 kernels.
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Example 5.4. For Matern-1/2 temporal kernels,

S(x, p) =
1

∆T

kS(r, p)
2

kS(p, p) (kS(r, r) + σ2
m)− kS(r, p)2

W (p, q) = 2λt
(
(σ2

t + 1)q2 − q
)
,

where r = Φ(x) is the position of a robot at state x. Since for isotropic spatial kernels
kS(p, p

′) = kS(∥p− p′∥),

S(d) ∝ kS(d)
2

kS(0)2 + σ2
mkS(0)− kS(d)2

where d = ∥Φ(x)− p∥ is the distance at which the measurement is taken. When d 7→ kS(d) is
nonincreasing, e.g. in the Matern and Squared Exponential kernels, S(x, p) is maximized at
Φ(x) = p, implying that the rate of increase in clarity about p is maximized when the robot
is also at position p. This is not, in general, true, since for example in periodic or polynomial
spatial kernels, S(x, p) may be maximized for some Φ(x) ̸= p. Furthermore notice that in the
limiting case of a spatiostatic environment, λt → 0, and therefore the decay rate D(p, q) → 0.

To summarize, in this information-gathering problem the spatiotemporal information to
be collected is modeled using a GP. To define a suitable coverage algorithm, we need to
quantify the value of taking a measurement at some robot state x ∈ X on the clarity gain at
any other position p ∈ D. This is captured by the clarity dynamics (5.42). The key functions
are S, the sensing function, and W , the decay function. Notice only S(x, p) is controllable
since it is the only term in (5.42) that depends on the robot’s state x.

5.2.4 Coverage Controllers

In this section, we use the sensitivity and decay functions in (5.42) to derive two coverage
controllers. The direct method chooses a control input that maximizes the rate of increase
in the total clarity integrated over the domain D. The indirect method determines the time
that the robot should spend at each position in the domain to achieve a target clarity and
then uses ergodic control to compute the control input.

5.2.4.1 Direct Method

The direct method minimizes the cost function

J(t) = ∥q(·)− q(t, ·)∥2H , (5.43)
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a function-space norm over p ∈ D between the current clarity distribution q(t, p) and the
target clarity distribution q(p). We use the Sobolev norm, defined in (5.32), and discussed
below.

Notice that J(t) does not explicitly depend on the robot’s state or control input. As such,
we choose to minimize J over a short horizon δ > 0 in the future:

J(t+ δ) ≈ J(t) + J̇(t, x)δ2 +
1

2
J̈(t, x, u)δ2 + · · · (5.44)

where the dependency on u first shows up in the J̈ term. This high-relative degree behavior
is a consequence of the fact that the clarity dynamics (5.42) depend on x, not ẋ. Therefore
the second derivative of J must be taken for the control input to appear in the expressions.
This behavior is commonly observed in the literature on coverage control, as in [27, Ch. 2]
and in [115]. Then, given control inputs u ∈ U ⊂ Rm, the controller will be of the form

π(t, x) = argmin
u∈U

J̈(t, x, u). (5.45)

We will derive a closed-form solution for this controller. Before doing so, we justify our
choices for the cost function and the control strategy.

We use the Sobolev norm for the following reasons. In [27], a differentiable sensing
functional (an analog of S) is used with the generalized transport theorem to compute
an analog of J̈(t, x, u). However, this approach often leads to local minima, where J̈(t, x, u)
becomes independent of u. This happens when all of the local information has been collected,
and there is no preference for the controller to move in one direction over the other. To
address this, [27] proposed combining the local search strategy with a global strategy, where
the controller would choose a new global waypoint when the local controller reaches a local
minimum. In our work, we use the Sobolev space norm instead of the ℓ2 norm, and this
allows the controllers to have a multispectral property [115] - it prioritizes global coverage
before prioritizing local coverage.

Second, to evaluate J̈ , we use the clarity dynamics we derived in Section 5.2.3.2. This is in
contrast to earlier works that used heuristic expressions to quantify coverage, and coverage
dynamics [27, 77]. As such, the derived controllers depend explicitly on the spatiotempo-
ral field’s kernel, and the sensing capabilities (in particular the sampling period ∆T and
measurement noise σm) of the robots.

Next, we derive the controller. The cost function is

J(t) = ∥q(·)− q(t, ·)∥2H =
∑
l∈Nd

Λl

(
q̂l − q̂l(t)

)2
, (5.46)
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where q̂l = ⟨q, bl⟩, q̂l(t) = ⟨ql(t, ·), bl⟩ are the inner products of q(·) and q(t, ·) with the l-th
basis function of the DCT. Recall the notation ⟨a, bl⟩, and Λl was defined in Section 5.2.1.4.
After some algebraic calculations, one can show that the first and second time-derivatives of
J are:

J̇(t, x) =
∑
l∈Nd

−2Λl(q̂l − q̂l(t)) ˙̂ql(t, x)

J̈(t, x, u) =
∑
l∈Nd

2Λl

(
˙̂q2l (t, x)− (q̂l − q̂l(t))¨̂ql(t, x, u)

)

where ˙̂ql(t, x), ¨̂ql(t, x, u) are

˙̂ql =
d

dt
⟨q(t, ·), bl⟩

=

∫
p∈D

(
S(x, p)(1− q(t, p))2 −W (p, q(t, p))

)
bl(p)dp

where S is as defined in (5.42). Similarly,

¨̂ql =
d2

dt2

∫
p∈D

q(t, p)bl(p)dp = B̂l(t, x)ẋ+O,

where O collects terms independent of ẋ (and therefore u), and B̂l(t, x) ∈ R1×n is as defined
as

B̂l(t, x) =

〈
(1− q(t, ·))2∂S

∂x
(x, ·), bl

〉
. (5.47)

Therefore, we have

J̈(t, x, u) =
∑
l∈Nd

−Λl(q̂l − q̂l(t))B̂l(t, x)ẋ+O

= −L(t, x)(F (x) +G(x)u) +O

where we define

L(t, x) =
∑
l∈Nd

Λl(q̂l − q̂l(t))B̂l(t, x).

Therefore, the choice of u that minimizes J(t+δ) yields a feedback controller πdir : R×D →
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U ,

πdir(t, x) = argmin
u∈U

− L(t, x)G(x)u

If U = {u ∈ Rm : ∥u∥ ≤ umax}, and L(t, x)G(x) ̸= 0,

πdir(t, x) = umax
G(x)TLT (t, x)

∥L(t, x)G(x)∥
. (5.48)

Proving that L(t, x)G(x) ̸= 0 for any t, x is non-trivial, and will be studied in future work.

5.2.4.2 Indirect Method

The second approach is inspired by ergodic control. Ergodic control uses a TSD to deter-
mine the feedback control law, as discussed in Section 5.2.1.4. Here we derive a principled
method to construct the TSD based on the information assimilation algorithm discussed
in Section 5.2.3.

The key idea is to set the TSD to be the time required for the clarity of our estimate of f
to increase from its current value to a specified target clarity q(p), assuming the robot was
making measurements from x = p. To compute this, we solve the differential equation (5.42)
and determine T (q, q), i.e., the time required to increase the clarity from q to q.

Then, given the target clarity distribution q : D → [0, 1], and the current clarity distribu-
tion q(t, ·) : D → [0, 1], the TSD can be specified as follows:

TSD(t, p) =

T (q(t, p), q(p)) if q(t, p) ≤ q(p)

0 else
. (5.49)

This equation has an analytic solution, see [7, Appendix].
Finally, we can use the ergodic control method described in [115] to design a feedback

controller for the system,

πind(t, x) = πergo(t, x,TSD) (5.50)

5.2.4.3 Extension to Multi-Robot Coverage Control

Our proposed coverage controllers have been presented for the single-robot cases above. Here
we discuss the extension and implementation of these methods in the multi-agent case, where
multiple robots have to decide how to move to collect information. We assume that they can
synchronize their information by sharing the clarity map, q(t, p) ∀p ∈ D, over a centralized
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setting, i.e., that they are connected over a complete graph so that each robot has access
to a centrally stored clarity map. The extensions to distributed settings are left for future
work.

Notice that both proposed controllers are feedback controllers, depending on the robot’s
position, and the clarity map q(t, p). Therefore, the control input for each agent can be
computed as ui = π(t, xi, q), where xi denotes the position of the i-th agent, and π ∈
{πdir, πind} can be either control strategy. In the indirect approach, we must also share the
history of positions visited by the agents.

As the robots move using the coverage controllers, the robots make measurements of the
spatiotemporal field from their respective positions. These measurements are assimilated
into a single estimate of the spatiotemporal field using the KF model. The information
assimilation is currently performed centrally, although future work will look into distributed
methods of maintaining the estimate.

5.2.5 Simulations

In this section, we report the simulation results of an information-gathering mission. As
a prototypical example, we consider the collection of wind data using a team of ten aerial
robots. The robots perform a two-hour mission, and we aim to maximize the clarity of the
wind field over the domain by the end of the mission. Our evaluation metric is both the
accuracy of the reconstruction, as well as the average clarity over the mission domain.

The mission domain is a 12.7 × 6.3 km2 region of southeastern Austria, located near
46.93◦ N, 15.90◦ E, chosen because of a high-quality ground-truth data set available from
WegenerNet [148]. The dataset provides wind speeds over the domain at a resolution of 100 m
and 30 minutes. The mission domain is particularly challenging due to its high weather and
climate variability [148]. Over the domain considered, the maximum wind speed is 13 m/s.

Each robot is capable of measuring the local x- and y-wind speed every 5 seconds. Each
measurement is perturbed by noise with σm = 0.5 m/s. The robots are modeled as single-
integrators with a maximum speed of 15 m/s. We use the KF model with a spatial grid
resolution of 320 and 160 m in the x- and y-directions to model the state of the environment.

The spatial and temporal hyperparameters were estimated using techniques from geo-
statistics [50, 167]. In particular, we constructed a variogram of the dataset and used a least-
squares fit to both the Matern-1/2 and the Squared Exponential kernels. The Matern-1/2
kernel fits the data better and is depicted in Figure 5.5b. The resulting kernel is of the form
k(t, p, t′, p′) = σ2 exp (− |t− t′| /lt) exp (−∥x− x′∥ /ls), where σ = 2.11 m/s, lt = 183 min,
ls = 1.61 km. Fitting the kernel using the variogram was computationally much faster and
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Figure 5.5: Wind data from WegenerNet [148]. (a) Wind speed and direction on Jan 1, 2023,
00:00, (b) Variogram showing the spatiotemporal correlation of the data. Surface shows the
fitted kernel.
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Figure 5.6: Simulation results. (a) shows the ground truth wind speed at the end of the
simulation. (b) shows the mean clarity against time. The mean is taken spatially. (c-e) show
the behavior of the direct method. (f-h) show the behavior of the indirect method. (c, d,
f, g) show the trajectories of the ten robots after eight minutes and after sixty minutes. (e,
h) show the estimated wind speed, and it closely matches the ground truth in (a).
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more reliable than the nonlinear minimization of the log-likelihood method of [171]. See [7,
Appendix] for additional details.

Simulations were run using both the direct and the indirect control strategies, and the
results are summarized in Figure 5.6. Fig. 5.6(a) shows the ground-truth data to be esti-
mated.8

Fig. 5.6(b) shows the change in average clarity over time as the robots explore the environ-
ment. Both the direct and indirect methods result in an almost identical average clarity at
each timestep. Furthermore, after about an hour of exploration, the average clarity reaches
a steady state value. This shows that due to the information decay rate, even as the robots
continually explore the environment, the average clarity cannot be increased further.

Fig. 5.6(c,d,f,g) show the trajectories using both controllers. Figs. 5.6(c, d) show the
trajectories of the direct method after 8 and 60 mins, and Figs. 5.6(f, g) show the corre-
sponding trajectories of the indirect method. The trajectories generated by the two methods
are remarkably different - in the direct method, the trajectories are jagged and tend to follow
straight lines. This is because of ∂S/∂x in (5.47), which places significant benefit on local
data collection. In contrast, the indirect method creates smoother trajectories.

Fig. 5.6(e, h) show the estimated wind speed at t=60 min. Comparing these to the ground
truth in Fig. 5.6(a), is it clear that both methods estimate the wind field accurately.

In Fig. 5.6(b), we also compare the behavior when using three robots to that of using ten
robots. As expected, when there are ten agents the mean clarity is higher (and increases
faster) than when there are only three agents.

5.2.6 Conclusions

In conclusion, we have addressed the design of cooperative multi-agent coverage controllers,
where the information is shared centrally, but the control decisions are made by each robot
independently. We identified a gap between information assimilation algorithms and cover-
age controllers. Therefore we proposed a method to quantify the value/impact that taking
measurements in a domain has on the clarity of our estimate of other parts of the domain.
To this end, we utilized Gaussian Processes to model the environment, as well as our earlier
work on the clarity dynamics, which in effect quantifies the information gained about the
domain due to measurements. We saw that the relative value of measurements is captured
by a function S. We used this function to propose two new coverage controllers that, al-
though qualitatively different, still cover the domain and collect information accurately. The

8In the interest of space, only the x-component of the speed is shown. Refer to https://github.com/
dev10110/multiagent-clarity-based-dynamic-coverage for additional figures.
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concepts were demonstrated through a simulation study of collecting information about a
wind field.

A key limitation of this work is that we assumed the spatial and temporal hyperparameters
of the Gaussian Process were fixed and known a priori. Although a method was described to
obtain these hyperparameters from data, in our future work we will aim to develop an online
method to estimate the hyperparameters and choose trajectories that improve the quality
of the hyperparameters. Finally, it would also be interesting to look into methods to ensure
the safety of the robots with a safety constraint that depends on the information collected
online. In such a scenario, the objective of collecting information must be weighed against
the importance of not violating safety constraints.

Marginal and Conditional Distributions

Consider a random variable Z ∈ Rn+m, given by

Z =

[
X

Y

]
∼ N

([
µx

µy

]
,

[
Σxx Σxy

Σyx Σyy

])

Then the marginal distributions are given by

X ∼ N (µx,Σxx)

Y ∼ N (µy,Σyy)

and the conditional distributions are given by

(X|Y = y) ∼ N (µ,Σ),

µ = µx + ΣxyΣ
−1
yy (y − µy)

Σ = Σxx − ΣxyΣ
−1
yy Σyx

Now consider two random variables X, Y , related by

X ∼ N (µ, P )

(Y |X = x) ∼ N (Cx,R)

where X ∈ Rn, Y ∈ Rm, C ∈ Rm×n, P ∈ Sn
++, R ∈ Sm

++.
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What this means is that we have an observation model

y = Cx+ w, w ∼ N (0, R)

Gaussian Processes

The kernel of a GP is defined by the following property

Definition 5.8. The kernel function of a Gaussian Process Z ∼ GP(m(x), k(x, x′)) with
mean function m : Rd → R and kernel function k : Rd × Rd → R is defined as

k(x, x′) = E [(Z(x)−m(x)) (Z(x′)−m(x′))] .

Example 5.5. The ν-th order Matern kernel is given by

kν(x1, x2) = σ2 2
1−ν

Γ(ν)

(√
2νλd

)ν
Kν

(√
2νλd

)
,

where Γ is the gamma function, Kν is the modified Bessel function of the second kind,
d = ∥x1 − x2∥, and σ, λ > 0 are parameters of the kernel. The half-integer Matern kernels
are given by

k1/2(x1, x2) = σ2 exp (−λd)

k3/2(x1, x2) = σ2
(
1 +

√
3λd
)
exp

(
−
√
3λd
)

k5/2(x1, x2) = σ2
(
1 +

√
5λd+ (5/3)λ2d2

)
exp

(
−
√
5λd
)

where d = ∥x1 − x2∥, and σ, λ > 0 are hyperparameters of the kernel.

Variograms

This section establishes a method to determine the hyperparameters of a Gaussian Process
using an Empirical Variogram. This method is significantly more computationally efficient
and accurate than standard methods of minimizing the marginal log-likelihood but is only
suitable for isotropic kernels.

Consider the data set D = {(xi, yi)}Ni=1, where xi ∈ Rd, yi ∈ R. The goal is to determine
the parameters of an isotropic kernel k : Rd × Rd → R that best fits the data.

Definition 5.9. [167, Eq 7.6] The theoretical variogram of a stationary random field
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Z : Rd → R with zero mean is

γ(d) =
1

2
E
[
(Z(x′)− Z(x))

2
]
,

where ∥x′ − x∥ = d. The expectation is taken over x, x′ ∈ Rd.

The theoretical variogram is related to GP kernels as follows:

Lemma 5.5. Suppose Z is a zero-mean and isotropic Gaussian Process. Then the kernel
k : R → R and the theoretical variogram γ : R → R are related by

γ(d) = k(0)− k(d)

Proof. For brevity, let f1 = f(x1), f2 = f(x2). By the definition of the kernel, for a zero-mean
GP

k(x1, x2) = E[(f(x1)−m(x1))(f(x2)−m(x2))]

= E[f1f2]

Similarly, from the definition of the theoretical variogram,

γ(d) =
1

2
E[(f(x1)− f(x2))

2]

=
1

2
E[f 2

1 ]− E[f1f2] +
1

2
E[f 2

2 ]

=
1

2
(E[f 2

1 ] + E[f 2
2 ])− E[f1f2]

=
1

2
(k(x1, x1) + k(x2, x2))− k(x1, x2)

=
1

2
(2k(0))− k(d)

using d = x2 − x1. Therefore,

γ(d) = k(0)− k(d).

Corollary 5.6. In the spatiotemporal case, if the kernel is

k(t, x, t′, x′) = kt(t, t
′)ks(x, x

′) (5.51)
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the theoretical variogram is

γ(dt, ds) = kt(0)ks(0)− kt(dt)ks(ds) (5.52)

We can use this Lemma to determine the parameters of the kernel. In particular, consider
the empirical variogram:

Definition 5.10. The empirical semi-variogram given data D is γ : R → R,

γ(d) =
1

2|N(d)|
∑
N(d)

(yi − yj)
2

where N(d) ⊂ Z × Z is the set of pairs (i, j) such that ∥xi − xj∥ ∈ (d − ϵ, d + ϵ) for some
ϵ > 0.

Then, given data D, we construct the empirical variogram. For a given kernel k with
hyperparameters θ, we can compute the corresponding theoretical variogram, and use least-
squares fitting to determine the set of hyperparameters θ that best fit the data D.

5.2.7 Gaussian Processes to Stochastic Differential Equations

This section explains the equivalence between GP and SDE for a class of kernel functions.
In this section, we focus on scalar GPs with zero mean,

f(t) ∼ GP(0, k(t, t′)),

where k : R× R → R is denoted with t to remind the reader that we consider a single (i.e.
temporal) dimension.

We use the following convention of a Fourier Transform9 of a function g : R → R:

Definition 5.11. The Fourier Transform of a function g : R → R is the function G : R → R,

G(ω) = F [g](ω) =

∫ ∞

−∞
g(t)e−iωtdt

The Inverse Fourier Transform is

g(t) = F−1[G](t) =
1

2π

∫ ∞

−∞
G(ω)eiωtdω

9In Mathematica, one must specify FourierParameters -> {1, -1} to yield the correct convention.
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This convention has the following properties:

F
[
dng

dtn

]
(ω) = (iω)nF [g](ω)

The Wiener-Khinchin theorem relates the kernel function to the power spectrum of a
stochastic process:

S(ω) = F [k](ω)

here, we write k(τ) = k(t, t′) for any |t− t′| = τ . When S is a rational function of even order
2nk, we can decompose S as

S(ω) = L(ω)L(−ω)

where

L(ω) =
bnk−1(iω)

nk−1 + bnk−2(iω)
nk−2 + · · ·+ b0

(iω)nk + ank−1(iω)nk−1 + · · ·+ a0

Given this decomposition, we know that the stochastic process f is a realization of a white
noise process W (t) that has been colored using the transfer function L(ω). Therefore, the
state-space model of the system is

ds = Asdt+BdW

z = Cs

where s ∈ Rnk is the state, W (t) is the standard (1D) white noise process. The output z(t)
will have the correct kernel function. Here, the constant matrices A ∈ Rnk×nk , B ∈ Rnk×1,
C ∈ R1×nk are

A =



0 1 0 · · · 0

0 0 1 · · · 0
. . .

0 0 0 · · · 1

−a0 −a1 −a2 · · · −ank−1


, B =



0

0
...
0

1


C =

[
b0 b1 b2 · · · bnk−1

]
To create a realization of f that has the desired kernel function, simulate the SDE starting
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from s0 ∼ N(0,Σ0), where Σ0 ∈ Rnk×nk is the solution to the Lyapunov equation AX +

XAT +BBT = 0.
Finally, the discrete time version of this, with a sampling period ∆t is

sk+1 = Φsk + wk, wk ∼ N (0,W )

zk = Csk

where

Φ = eA∆t

W =

∫ ∆t

0

eAτBBT eA
T τdτ

Some analytic expressions are derived below.

Example 5.6 (Matern 1/2). The 1D Matern-1/2 kernel is

k1/2(d) = σ2 exp (−λd)

It has a power-spectral density

S1/2(ω) =
2λσ2

λ2 + ω2

and rational decomposition

L1/2(ω) =
σ
√
2λ

(iω) + λ

Therefore, the state-space representation is(
A B

C

)
=

(
−λ 1

σ
√
2λ

)

Example 5.7 (Matern 3/2). The 1D Matern-3/2 kernel is

k3/2(x1, x2) = σ2
(
1 +

√
3λd
)
exp

(
−
√
3λd
)
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It has a power-spectral density

S3/2(ω) =
12
√
3λ3σ2

(3λ2 + ω2)2

and rational decomposition

L3/2(ω) =

√
12
√
3λ3/2σ

(iω)2 + 2
√
3λ(iω) + 3λ2

Therefore, the state-space representation is

(
A B

C

)
=

 0 1 0

−3λ2 −2
√
3λ 1√

12
√
3λ3/2σ 0


Example 5.8 (Matern 5/2). The 1D Matern-5/2 kernel is

k5/2(x1, x2) = σ2
(
1 +

√
5λd+ (5/3)λ2d2

)
exp

(
−
√
5λd
)

It has a power-spectral density

S5/2(ω) = σ2 400
√
5λ5

3 (5λ2 + ω2)3

and rational decomposition

L5/2(ω) =

√
400

√
5

3
λ5/2σ

(iω)3 + 3
√
5λ(iω)2 + 5

√
5λ3

Therefore, the state-space representation is

(
A B

C

)
=


0 1 0 0

0 0 1 0

−5
√
5λ3 −15λ2 −3

√
5λ 1√

400
√
5

3
λ5/2σ 0 0


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5.2.8 Solutions to the Ricatti Equation

Lemma 5.7. Consider a differential equation

y′(t) = −αy(t)2 − βy(t)− γ (5.53a)

y(0) = y0 (5.53b)

where α, β, γ ∈ R, α ̸= 0, and δ2 = β2 − 4αγ > 0. Then, the solution is given by

y(t) =
1

2α

(
−β + δ +

2δρ0
(2δ + ρ0) eδt − ρ0

)
(5.54)

where ρ0 = β − δ + 2αy0.

Proof. This is a second-order nonlinear differential equation, also known as the scalar Ricatti
equation. As proposed in [82, Ch. 2.15], consider the substitution

y(t) =
u′(t)

αu(t)
(5.55)

Then, it is equivalent to the following differential equation

u′′(t) = −βu′(t)− αγu(t) (5.56a)

y0 =
u′(0)

αu(0)
(5.56b)

This linear second-order differential equation has a unique solution

u(t) =
(
c2e

δt + c1
)
e−

1
2
t(β+δ) (5.57)

where δ =
√
β − 4αγ and the constants c1, c2 depend on the boundary condition. Evaluating

the boundary conditions, we have the relationship

y0 =
1
2
(c1 + c2)(−β − δ) + c2δ

α(c1 + c2)
(5.58)

Evaluating y = u′/(αu), we have

y(t) =
1

2α

(
−β + δ − 2c1δ

c2eδt + c1

)
(5.59)
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Plugging in the boundary condition, we arrive at

y(t) =
1

2α

(
−β + δ +

2δρ0
(2δ + ρ0) eδt − ρ0

)
(5.60)

where ρ0 = β − δ + 2αy0, independent of c1, c2.

Corollary 5.8. The limiting value of (5.54) is

y∞ = lim
t→∞

y(t) =
δ − β

2α
. (5.61)

Corollary 5.9. The inverse of (5.54) is given by

t =
1

δ
log

(
ρ0 (2δ + ρf )

ρf (2δ + ρ0)

)
(5.62)

where δ2 = β2 − 4αγ, ρ0 = β − δ + 2αy0 and ρf = β − δ + 2αyf .
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CHAPTER 6

Conclusions

Contributions

The goal of this thesis was to establish architectures and methodologies for safe autonomous
systems. In the introduction, we discussed the top-down vs bottom-up approach to designing
safety critical systems, and here we review this idea in the context of the chapters presented
above. Recall Figure 1.1, reproduced here:

Environment

 Control Inputs 

Controller
(Ch 2)

Planner
(Ch 3)

Perception
(Ch 4)

Mission-level
Planner
(Ch 5)

 Sensor Data  Robot

Flow of information

Flow of constraints

Autonomy Stack

Figure 6.1: A robot’s autonomy stack has information flowing from left-to-right, while safety
constraints flow from right-to-left. This forwards and backwards flow is a key challenge in
designing safety critical autonomous systems.

The dissertation was structured in a bottom-up approach, since this closely resembles the
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flow of constraints through an autonomous safety-critical system. The safety guarantees only
hold if the controller is able to produce control inputs that lead to safe behavior by the robot.
In turn, the controller is only able to produce safe control inputs if it receives a reasonable
command from the planner, and if the perception system produces state estimates and
obstacle maps that are correct. These requirements of correctness flow from the controller
towards the mission level planner and constraints the set of missions that can be executed
by the robot.

This also means that for a mission to be successfully executed, the safety constraints need
to be flexible enough that the mission can be executed without the safety filters leading the
robot astray. This means that although we can and should select the various modules of the
autonomy stack to meet mission requirements, we must also design the safety filters such
that they do not prevent the mission from occurring.

Of all the results presented in this thesis, we think a few deserve special attention, and
especially so since they can be integrated together well:

• In Section 2.3 we proposed a method to synthesize safe controllers in the presence of
state estimation uncertainty. This could be used to construct tracking controllers with
guarantees that the state remains within a tube of a desired trajectory.

• In Section 3.2 we proposed the gatekeeper framework to bridge the planners with
controllers in a safety-critical manner. This strategy constructs and updates a com-
mitted trajectory based on the information available. If the committed trajectory is
tracked by the controller, it guarantees safe operation.

• In Section 4.1 we proposed a method to construct a certifiably correct map of the safe
states despite the presence of odometry drift. This produces obstacle maps that can
be used by gatekeeper to plan safe trajectories.

• In Section 5.1 we proposed and defined the concepts of clarity and perceivability. These
allow a system designer to analyze whether the robotic system even has the ability to
complete its information gathering task in the first place - this can also be used to
modify the actuation or sensing capabilities of the robot to make the robot more
efficient at its mission objective.

Limitations and Directions for Future Work

There are a number of limitations of the work presented above, most of which are promis-
ing directions for future research. For specific chapters these were discussed earlier in the
respective chapters. Here we present focus on the broader impacts that can be developed.
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Resilience vs Robustness: Throughout the thesis, the presented controllers and ar-
chitectures were designed to be robust, not resilient: the proposed methods were robust to
disturbances, or bounded errors in various signals, but not resilient, for example to outliers,
misinformation, or timing inconsistencies. A system that is resilient is in some sense less
fragile in the face of extreme or unlikely events. For a robotic system to operate safely in the
real world, we require both robustness and resilience, and new analysis and synthesis tools
will need to be developed to address the resilience problem. Naturally, there is a growing
literature on this topic, but is beyond the scope of this thesis.

Stochasticity vs Boundedness: In a similar vein, the thesis almost exclusively focused
on robustness to bounded disturbances and uncertainties. We made this choice primarily
because the mathematical tools to analyze bounded disturbances are far simpler than those
for stochastic disturbances and uncertainties. Not only does this introduce conservatism into
the control design, the maximum disturbance becomes a crucial tuning parameter that is
often not available in practice.

Robustness vs Adaptation: This leads to us to the following question: should the
autonomy stack be robust to the worst case disturbance, or adapt to the level of disturbance
online? Adapting to the level of disturbance in the system seems like a clear choice, since
it should allow system to be aggressive when it is safe to do so, and conservative when
there is greater uncertainty. In this thesis however, we focused mainly on the former, again
since the analysis is more straightforward - with adaptive methods, one must deeply un-
derstand the nature of the incoming data, whether it is descriptive enough to characterize
future disturbances, and the closed-loop effect of adapting a controller. These are not trivial
questions, and again while a significant amount of literature exists to address this question,
more principled analysis will be required before we can deploy general adaptive methods in
a safety-critical autonomy stack.

Understanding the Limitations of Sensor Data: As depicted in Figure 6.1, the
future trajectory of the robot is determined purely by the control inputs passed into the
robot. While this is true, the control inputs are computed from the sensor data produced by
the robot in its environment. As control-theorists, we often believe sensor data is perfect,
or perhaps corrupted by some noise that is characterized often through Gaussian random
variables. However, in modern robotic systems the sensor data is more complicated, including
sources like cameras, LIDAR, GPS, and more. This sensor data directly impacts the world
model built inside the autonomy stack, and therefore the calculated control inputs. We
currently have very limited mathematical tools to analyze the nature of the incoming sensor
data, in particular to be able to understand how the quality and uncertainty of the sensor
data impacts each of the downstream modules. For example, when using a camera system to
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estimate the world, we can use data to identify humans or obstacles in the scene, but we also
need methods to understand which parts of the state-space are occluded or have possibly
changed dynamically to be able to design control inputs that guarantee safety. While in this
example we can use geometric arguments to compute such occlusions, it is not clear how this
extends to the case where neural networks predict the obstacles directly from the camera
feed: how can one design the neural network to guarantee that it can correctly identify
occlusions or dynamic obstacles?1

Closing the loop on informative path planning: The connection between the
information-driven planning and the rest of the perception, planning, and control mod-
ules is still weak. The common paradigm in robotics today is that the perception module
can operate independently of the planning module, which can operate independently of the
control module. As we have discussed, for safety critical autonomy, this is not the case, and
the modules must be co-designed for safety guarantees to hold. However, the connection and
dependence on the mission-level planner is still not well understood - can the robotic system
be designed such that it determines which information it should collect and how and when
it should collect it so that it can perform its mission without deviating from desired plan?

We can construct a simple thought experiment to illustrate this point further. Consider
a drone delivery system, tasked with delivering packages in a cluttered urban setting. The
wind flow around the buildings it operates near is hard to predict yet crucial for robot to
fly safely. In the absence of this information, one can design a safety filter that prevents
the robot from getting close to the building, forcing it to fly a longer route. However given
the data collected online it is conceivable that the robot can learn the local wind fields and
therefore fly closer to the building when it is safe to do so - how and when should the robot
deviate from its nominal plan to collect said information? With what confidence does it
know this information that it can use this to plan safe trajectories? Is it even valuable to
collect said information, and if it is unclear whether this information is useful, how should
the robot decide when to make these maneuvers? These are interesting questions not only
from the theoretical point of view, but also for practical applications.

A language for architectures:
Finally, I want to return to the idea that the flow-of-information goes from left-to-right,

while the flow-of-constraints goes from right-to-left. Although a useful and appealing idea,
real robotic systems are rarely this simple and sequential: each module has multiple inter-
dependencies, both at runtime and at design time. Today, each of perception, planning, and
control is often handled by separate teams that sometimes have joint meetings (often since

1Mark Rober does a great job of illustrating the perils of purely vision-based navigation: https://www.
youtube.com/watch?v=IQJL3htsDyQ

182

https://www.youtube.com/watch?v=IQJL3htsDyQ
https://www.youtube.com/watch?v=IQJL3htsDyQ


they disagree on who is responsible to handle a nasty edge case). I believe this approach
is not sustainable into the next generation of more complicated autonomous systems, espe-
cially ones that involve large multiagent heterogenous teams of robots that must interact
with other autonomous agents. To design such interconnected and interdependent systems,
I believe we will need a more abstract and general (mathematical) language to analyze how
each module of each agent depends on and influences other modules or other robots. Again,
this is an upcoming and promising field of research, but the results there are still in their
infancy, since we do not yet know what is the correct abstraction necessary to analyze these
autonomy architectures.
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