
10-725: Convex Optimization Spring 2023

Lecture 12: February 23rd
Lecturer: Siva Balakrishnan

Today’s lecture will focus on the Fenchel conjugate function, and the important role it plays
in duality (sometimes called Fenchel duality). Part of the motivation for Fenchel duality is
that our scheme for deriving duals (via Lagrange duality) seems somehow intricately tied to
having a constrained optimization problem, and manipulating the constraints in some way.

However, for a problem like the LASSO (and many other problems) there aren’t any con-
straints (but the objective has some structure), and it would be nice if we could rewrite these
types of problems in order to gain some insights (or to derive new algorithms). Indeed, we
have noticed before that every constrained program could be written as an unconstrained one
(by using an indicator function for feasibility), and so it seems natural that these problems
should have interesting duals. We’ll revisit this idea in a bit.

12.1 Fenchel Conjugate

Suppose we’re given a function f , then the Fenchel conjugate is defined to be:

f ∗(y) = sup
x∈dom(f)

(yTx− f(x)).

Some intuition: One way to understand this definition is that for any given slope y we
could ask for the “highest” line that minorizes (i.e. lives below) the function, i.e. we could
ask for the line with largest possible intercept. This intercept is exactly −f ∗(y). To see this,
suppose we require that,

f(x) ≥ yTx− b, for all x ∈ dom(f).

Several scalars b could satisfy this condition, in which case, we would like the line with largest
intercept, i.e. we would try to make b as small as possible. We see that,

b ≥ yTx− f(x), for all x ∈ dom(f),

so the smallest value that works is to set,

b = sup
x∈dom(f)

[yTx− f(x)] = f ∗(y).

Alternatively, this is saying that for any given slope y, the intercept of the largest affine
minorant of f with slope y is −f ∗(y). Here is a figure from BV which summarizes this
discussion:

12-1



12-2 Lecture 12: February 23rd

An important property of the Fenchel conjugate is that irrespective of whether f is convex or
not f ∗ is convex. This is because f ∗ is the pointwise maximum/supremum of affine functions.

12.1.1 Examples

Here are some nice examples to build some intuition.

Linear: Suppose that f(x) = aTx+ b. In this case, we would evaluate:

f ∗(y) = sup
x

[xT (y − a)− b].

So we conclude that,

f ∗(y) =

{
−b, if y = a

∞, otherwise.

Quadratic: Suppose that f(x) = 1
2
xTQx, with Q � 0. Then we can compute:

f ∗(y) = sup
x

[xTy − 1

2
xTQx] :=

1

2
yTQ−1y,

just by taking the derivative and setting it to 0. Lets briefly notice a curious fact (that will
turn out to be much more generally true).

∇f(x) = Qx

∇f ∗(y) = Q−1y,
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so we have that ∇f ∗(∇f(x)) = x, and ∇f(∇f ∗(y)) = y, i.e. the gradient of the conjugate
is the inverse of the gradient of the function.

Norm: Suppose that f(x) = ‖x‖ for some norm. Then we observe that,

f ∗(y) = sup
x

[xTy − ‖x‖] =

{
0 if ‖y‖∗ ≤ 1

∞ otherwise.

In words, the conjugate is the convex indicator of the unit ball of the dual norm. To
see this, observe that if ‖y‖∗ ≤ 1, then by the Cauchy-Schwarz inequality, we know that
xTy ≤ ‖x‖‖y‖∗ ≤ ‖x‖ so the term in the supremum is always ≤ 0, so the supremum
corresponds to setting x = 0.

On the other hand, if ‖y‖∗ > 1, then we know that there must be some z, with ‖z‖ ≤ 1 such
that, zTy > 1. Suppose in our optimization problem we take x = tz then we get,

f ∗(y) ≥ t(zTy − ‖z‖),

and so letting t→∞, gives that f ∗(y) =∞.

Convex Indicator: Suppose that f(x) = IC(x), i.e. the function is a convex indicator,
then:

f ∗(y) = sup
x

[xTy − f(x)] = sup
x∈C

xTy.

This function is known as the support function of the set C. Notice that as a consequence
of the definition,

xTy − f ∗(y) ≤ 0, for any x ∈ C,

so the set C lies on one side of this hyperplane. Further if the set is nice (closed) so that
the sup is attained, we know that there is some x0 ∈ C such that, xT0 y − f ∗(y) = 0, i.e. the
hyperplane xTy − f ∗(y) is a supporting hyperplane of the convex set.

12.1.2 Fenchel’s Inequality

The most basic property of the conjugate function that is immediate from its definition is
that,

f ∗(y) ≥ xTy − f(x).

This is known as Fenchel’s inequality or Young’s inequality or the Fenchel-Young inequality.

An immediate consequence is that for any function f , f ∗∗ ≤ f . To see this (this is also a
HW question), we notice that for any y by Fenchel’s inequality,

f(x) ≥ xTy − f ∗(y),
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so that,

f(x) ≥ sup
y

[xTy − f ∗(y)] = f ∗∗(x).

12.1.3 Conjugate of Fenchel Conjugate

We’ve already seen via Fenchel’s inequality that f ∗∗ ≤ f . It is the case, that if the function
f is closed (i.e. its epigraph is a closed set) and convex, then this holds with equality, i.e.
f ∗∗ = f .

The Epigraph as an Intersection of Halfspaces: It’s worth recalling/noting the
following fact: any closed convex set is equal to the intersection of all the halfspaces which
contain it. (This is very simple to prove as a consequence of the separating hyperplane
theorem.)

This suggests that we could describe a closed convex function (a convex function whose
epigraph is closed), by instead describing its epigraph. This would be a dual description of
the convex function. Indeed, this dual description leads naturally to the Fenchel conjugate.

Concretely, suppose that f ∗∗ = f , then notice that,

epi(f) = {(x,w) : f(x) ≤ w}
= {(x,w) : sup

y
[xTy − f ∗(y)] ≤ w}

= {(x,w) : xTy − f ∗(y) ≤ w, y ∈ Rd}
= ∩y∈Rd{(x,w) : xTy − w ≤ f ∗(y)}.

So we have described the epigraph as a intersection of many halfspaces, and these halfspaces
have intercepts which are defined in terms of the Fenchel conjugate.

When f ∗∗ 6= f , then you can go through a similar chain of reasoning to show that the
epigraph of f is contained in the intersection of a collection of halfspaces defined by f ∗ (but
the containment is strict).

12.1.4 Inverse of Gradient

One of the other nice properties of the Fenchel conjugate is that it gives us an expression
for the inverse of the gradient mapping. Recall, that we used this inverse in our description
of the mirror descent algorithm (but it should not have been very obvious why the inverse
exists, or when it does).

Here is the basic result: suppose that f is closed and convex. Then ∂f and ∂f ∗ are inverses
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in the following sense:

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(y).

When the function and its conjugate are in fact differentiable, this yields the fact that
∇f ∗(∇f(x)) = x.

We won’t prove this rigorously (it’s a part of your HW), but lets try to get some sense
for why this is true. The first thing we’ll need to know is the subgradient of a pointwise
maximum (everything we’re saying will generalize to a supremum), i.e. suppose:

f(x) = max{fi(x) : i = 1, . . . ,m},

then

∂f(x) = conv

 ⋃
i∈I(x)

∂fi(x)

 ,
where I(x) = {i : fi(x) = f(x)} (i.e. the functions which attain the maximum). You can
use this above fact on your HW (without proof).

Now, for the non-rigorous intuition (you’ll need to be more careful using subgradient condi-
tions in the HW). Suppose that all our functions are differentiable and we write

f ∗(y) = sup
x

[xTy − f(x)],

then if some x∗ maximizes the RHS (non-rigorous), then by gradient optimality we must
have that y = ∇f(x∗). On the other hand, we can write f ∗(y) = (x∗)Ty − f(x∗) so that
∇f ∗(y) = x∗. Putting these together gives us the claim that, ∇f(∇f ∗(y)) = y. Now, you
can use the fact that f ∗∗ = f to obtain the claim that, ∇f ∗(∇f(x)) = x.

12.1.5 Duality Between Smoothness and Strong Convexity

Another connection that you will explore a bit more in your HW is the duality between
smoothness and strong convexity. Here is the result: if f is α-strongly convex, then f ∗ is
1/α-smooth. On the other hand, if f is convex, β-smooth, then f ∗ is 1/β-strongly convex.

You can see this easily for the convex quadratics we discussed earlier, but it holds in general.

Remark: This connection is pretty interesting. We haven’t yet discussed this yet, but if we
could optimize a function f by optimizing its conjugate f ∗ instead, then we could transform
problems with smoothness into ones with strong-convexity and vice versa. One reason why
this is interesting is that accelerated methods achieve a faster rate for smooth problems –
but acceleration is not possible for strongly convex problems which are not smooth. This
suggests that at least if the conjugate is easy to compute (not always the case), then we
might hope for an accelerated method for strongly convex problems which are not smooth
by working in the dual.



12-6 Lecture 12: February 23rd

12.2 Fenchel Duality

Now, that we have defined the Fenchel conjugate, we can return to our original conundrum.
We’d like to understand better if (at least in certain cases), we can derive interesting dual
programs to unconstrained optimization problems.

12.2.1 The Simplest Case

Suppose I have an unconstrained problem,

min
x
f(x) + g(x).

You could imagine g is an indicator of a constraint set, or a regularizer. It’s not clear how
to use Lagrange duality here. However, notice that we could re-write this as the following
constrained problem:

min
x,z

f(x) + g(z)

subject to x = z.

Writing out the Lagrangian:

L(x, z, u) = f(x) + g(z) + uT (x− z),

so the dual problem is:

sup
u

inf
x

[f(x) + uTx] + inf
z
g(z)− uT z = sup

u
−f ∗(−u)− g∗(u).

This problem is sometimes called the Fenchel dual of the original problem. Fenchel’s duality
theorem gives conditions on f and g such that strong duality holds. Particularly, it says that
if there is some x0 ∈ dom(f)∩ cont(g) then strong duality holds. cont(g) is the set of points
where the function g is continuous. In the case, when g is the indicator of a convex set, this
condition will precisely recover Slater’s conditions (i.e. we need a strictly feasible point).

12.2.2 A Slightly More Interesting Case

A slightly more interesting example, one that will include the LASSO as a special case, is
problems of the form:

min
x
f(Ax) + g(x).
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We could introduce the constraint Ax = z, to write,

min
x,z

f(z) + g(x)

subject to Ax = z,

and then derive the Lagrange dual as above to see that the dual is:

max
u
−f ∗(u)− g∗(−ATu).

As an application, suppose we took the LASSO program:

min
x

1

2
‖y − Ax‖22 + λ‖x‖1 := min

x
f(Ax) + g(x),

then we would have the dual problem (needs a few steps of algebra to derive the conjugates):

max
u

[
−yTu− 1

2
‖u‖22 − I(‖ATu‖∞ ≤ λ)

]
:= max

ũ

[
yT ũ− 1

2
‖ũ‖22 − I(‖AT ũ‖∞ ≤ λ)

]
,

by replacing u by −ũ since it is unconstrained. This dual problem has the same optimizer
as the following slightly more interpretable problem:

min
ũ

1

2
‖y − ũ‖22,

subject to ‖AT ũ‖∞ ≤ λ.

This dual is quite nice – it says that the dual to the LASSO is simply a projection problem,
and it’s a projection onto a polytope. In deriving this dual (in one of the steps of algebra
to derive the conjugate) you would notice that ũ = y − Ax, so given the dual optimal
solution it’s easy to derive the primal optimal solution (and strong duality holds). This dual
can be used to show various properties of the LASSO fitted values (the fact that has some
projection interpretation means that the fitted value inherit some type of Lipschitzness/non-
expansiveness that we associate with projections).

More broadly, this idea of introducing constraints to derive a dual optimization problem, is
at the heart of many dual optimization schemes – for instance, algorithms like dual ascent
and ADMM (Alternating Direction Method of Multipliers) all sometimes involve steps like
this.


